基于VaR对商业银行β系数的测算研究
[Abstract]:The 尾 coefficient plays an important role in both the CAPM model and the risk management system. And in the empirical aspect also rarely subdivides to each industry. Based on this, in order to make the 尾 coefficient more pertinence, reliability and practicability, this paper subdivides the scope of the research into Chinese commercial banks, and chooses 16 listed commercial banks as the research object in the empirical part. In the estimation model, the VaR- 尾 model proposed by Yao Jing, Yuan Zijia, Li Zhongfei and Li Duan (2009) is selected. In selecting the estimation method of VaR- 尾 model, this paper draws lessons from one of the three methods proposed by Yao Jing, Yuan Zijia, Li Zhongfei and Li Duan, which is the nuclear density estimation method. After calculating the VaR- 尾 coefficient of each commercial bank, Compared with the traditional 尾 coefficient, the advantages and disadvantages of VaR- 尾 model in the value assessment and risk management of commercial banks in China are obtained. The VaR- 尾 model selected in this paper is the VaR- 尾 value calculated under the kernel density estimation method, but the kernel density estimation is not sensitive to the choice of the kernel density function. In other words, this paper does not consider the distribution characteristics of the return series when calculating the VaR- 尾 value, and calculates the VaR- 尾 value with the real characteristics of the data, which reduces the estimation error fundamentally. In addition, because the VaR- 尾 value calculated in this paper depends on the confidence level to a great extent, therefore, for the enterprise, it can be based on the investor sentiment in the market, its own operating condition and its risk bearing ability. Accurately determine the confidence level 伪, keep the capital of the enterprise at the minimum cost and evaluate the value of its own enterprise accurately; For investors in the market, before making investment decisions, according to the whole market situation of the enterprise, the enterprise's operating condition, risk tolerance ability and its own risk preference, the confidence level 伪 is determined. Finally, the VaR- 尾 value of the enterprise is determined to obtain the enterprise value which accords with its investment preference.
【学位授予单位】:首都经济贸易大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F224;F832.33
【参考文献】
相关期刊论文 前10条
1 胡蓓蓓;宗刚;;非参数核密度估计在异方差模型中的应用[J];数量经济技术经济研究;2014年10期
2 居尔宁;王辉;徐晓阳;;商业银行系统风险β值研究——以华夏银行为例[J];会计之友;2013年24期
3 郭卫东;;中国上市银行的系统性风险贡献测度及其影响因素——基于MES方法的实证分析[J];金融论坛;2013年02期
4 白彩全;;金融危机背景下银行类股票β值及其稳定性的实证检验[J];经济研究导刊;2012年11期
5 江涛;;基于GARCH与半参数法VaR模型的证券市场风险的度量和分析:来自中国上海股票市场的经验证据[J];金融研究;2010年06期
6 黄文彬;郑振龙;;基于高阶矩的金融资产定价和配置[J];福州大学学报(哲学社会科学版);2010年01期
7 周芸锋;吴雁;;国内外β系数相关特性研究综述[J];财会通讯;2009年30期
8 姚京;袁子甲;李仲飞;李端;;VaR风险度量下的β系数:估计方法和实证研究[J];系统工程理论与实践;2009年07期
9 张雯;靳军会;刘强强;;沪市CAPM模型的实证分析[J];福建商业高等专科学校学报;2008年04期
10 罗登跃;王春峰;房振明;;深圳股市时变Beta、条件CAPM实证研究[J];管理工程学报;2007年04期
相关硕士学位论文 前10条
1 闻才喜;基于神经网络分位数回归及核密度估计的概率密度预测方法研究[D];合肥工业大学;2015年
2 任晓萍;基于CAPM-GARCH-M模型对β系数的估计研究[D];南京大学;2014年
3 王艳朝;股票市场收益率高阶矩的动态特征研究[D];山东大学;2014年
4 李世元;一种基于高阶矩的金融危机预测方法[D];山东大学;2014年
5 刘颜荣;基于CoVaR方法测度我国证券业系统性风险[D];厦门大学;2014年
6 程丽娟;基于CoVaR方法的商业银行系统性风险度量[D];山西财经大学;2013年
7 马峥;中国证券市场中Beta系数预测之实证研究[D];上海交通大学;2010年
8 单娟;我国股票预期β系数与会计变量相关性的实证研究[D];华东交通大学;2009年
9 宋薇;我国上市银行系统性风险预测研究[D];中国海洋大学;2009年
10 马庆琰;基于CAPM对上市公司β值的调整[D];西南财经大学;2008年
,本文编号:2352365
本文链接:https://www.wllwen.com/jingjilunwen/huobiyinxinglunwen/2352365.html