当前位置:主页 > 经济论文 > 技术经济论文 >

硝化抑制剂对尿素氮转化及玉米氮素利用和产量的影响

发布时间:2018-05-01 05:06

  本文选题:硝化抑制剂 + 氮素转化 ; 参考:《东北农业大学》2016年硕士论文


【摘要】:据统计,我国单位面积化肥用量比世界平均水平高出2.7倍,由此造成的生态和环境压力与日倍增,同时,作物对传统肥料的吸收利用效率在逐年降低,发展新型肥料成为一种必然趋势。硝化抑制剂的使用能用减缓土壤硝化作用的进程,提供作物所需养分的同时最大限度的保证了环境安全。本文是针对黑龙江省黑土区第一大农作物玉米施用氮肥增效剂的研究,通过田间小区试验,探讨混合型硝化抑制剂对土壤氮素转化、土壤p H值的影响,以及与一次性全施肥、追肥进行氮素积累、产量和品质的比较分析,获得混合型硝化抑制剂最佳配比。土壤铵态氮、硝态氮含量在玉米苗期的变化差异最明显,尿素添加硝化抑制剂的处理,苗期土壤的铵态氮和硝态氮含量均达到生育期内的最大值,吡唑类硝化抑制剂易被土壤胶体所吸附,导致各处理生育后期的土壤铵态氮、硝态氮含量基本一致,尿素中硝化抑制剂的添加与否均使土壤铵态氮、硝态氮呈现出苗期含量达到最高、而后明显下降的变化趋势。尿素添加硝化抑制剂明显降低了土壤的硝化率,与一次性全施肥、追肥处理存在显著性差异。土壤p H值的变化范围在5.5~7.0,土壤pH值的下降是尿素添加硝化抑制剂施用后的明显特征,该范围内土壤p H值的下降可降低土壤铵态氮向硝态氮的转化速度,活化被土壤胶体所固定的磷元素,减少氮素以氨的形式挥发。在相关性分析中发现,土壤pH值与硝化率之间存在极显著正相关关系,相关系数达到0.5697**;土壤p H值与土壤铵态氮含量存在极显著负相关关系,相关系数为-0.4962**。土壤含水率与土壤pH值、硝化率关系密切,均存在极显著负相关线性关系,针对黑龙江省“雨热同季”的气候特征,结合土壤含水率在抽雄期达到最大值的变化情况,说明5~8月份,随着土壤含水率和土温的上升,加速了硝化抑制剂被微生物的分解速度,抑制剂作用于尿素态氮素转化的有效性增强,保证了作物生育后期对养分的需求。根据硝化抑制效果、经济系数、氮素积累、氮收获指数、产量、产量构成因子及氮肥利用率的综合性分析,最后认为配方2低浓度处理(吡唑-吡啶盐酸盐混合物0.125%添加量)的作用效果最好,其次是配方1(吡唑-吡啶硫酸盐混合物)。其中,配方1高浓度处理(吡唑-吡啶硫酸盐混合物0.5%添加量)的苗期硝化抑制率最高,为64.93%;经济系数最高,达到61.39%。配方2低浓度处理(吡唑-吡啶盐酸盐混合物0.125%添加量)、配方1中浓度处理(吡唑-吡啶硫酸盐混合物0.25%添加量)分别较一次性全施肥处理增产10.69%和5.89%;配方2低浓度处理、配方1低浓度处理(吡唑-吡啶硫酸盐混合物0.125%添加量)对氮肥的利用效率最佳,分别为58.16%和47.14%。
[Abstract]:According to statistics, the amount of fertilizer per unit area in China is 2.7 times higher than the world average, resulting in a doubling of ecological and environmental pressures and diurnal pressure. At the same time, the efficiency of traditional fertilizer absorption and utilization by crops is decreasing year by year. The development of new type fertilizer has become an inevitable trend. The use of nitrification inhibitors can slow down the process of soil nitrification and provide the nutrients needed by crops while ensuring maximum environmental safety. In this paper, the effect of mixed nitrification inhibitor on soil nitrogen conversion, soil pH value, and total fertilizer application were studied through field experiments on the application of nitrogen fertilizer synergist to maize, the largest crop in the black soil area of Heilongjiang Province. The optimum ratio of mixed nitrification inhibitors was obtained by comparing and analyzing nitrogen accumulation, yield and quality of top dressing fertilizer. The change of soil ammonium nitrogen and nitrate nitrogen content was the most obvious in maize seedling stage. The content of ammonium nitrogen and nitrate nitrogen reached the maximum value in seedling stage when urea was added with nitrification inhibitor. Pyrazole nitrification inhibitors are easy to be adsorbed by soil colloids, which leads to the same content of ammonium nitrogen in soil at the later stage of growth, and the addition of nitrification inhibitors in urea can make the soil ammonium nitrogen. Nitrate nitrogen content reached the highest level at emergence stage and then decreased obviously. The addition of nitrification inhibitor to urea significantly reduced the nitrification rate of soil, which was significantly different from that of one-off total fertilization and topdressing. The variation range of soil pH value was 5.5 ~ 7.0.The decrease of soil pH value was the obvious characteristic after application of urea with nitrification inhibitor. The decrease of soil pH value in this range could reduce the conversion rate of soil ammonium nitrogen to nitrate nitrogen. Activate phosphorus fixed by soil colloid and reduce nitrogen volatilization in the form of ammonia. In the correlation analysis, it was found that there was a very significant positive correlation between soil pH value and nitrification rate, with a correlation coefficient of 0.5697, and a very significant negative correlation between soil pH value and soil ammonium nitrogen content, with a correlation coefficient of -0.4962. Soil moisture content was closely related to soil pH value and nitrification rate, and there was an extremely significant negative correlation linear relationship between soil moisture content and soil pH value and nitrification rate. According to the climatic characteristics of "Rain Heat in the same season" in Heilongjiang Province, the change of soil moisture content reached the maximum value at the stage of pumping and reeling. The results showed that with the increase of soil moisture content and soil temperature, the decomposition rate of nitrification inhibitor by microorganisms was accelerated in May August, and the effectiveness of nitrification inhibitor acting on urea nitrogen transformation was enhanced, which ensured the nutrient demand in the later stage of crop growth. According to the comprehensive analysis of nitrification inhibition effect, economic coefficient, nitrogen accumulation, nitrogen harvest index, yield, yield composition factor and nitrogen fertilizer utilization, It was concluded that formula 2 had the best effect with low concentration treatment (0.125% addition of pyrazole-pyridine hydrochloride mixture), followed by formula 1 (pyrazole-pyridine sulfate mixture). The highest nitrification inhibition rate (64.93%) and the highest economic coefficient (61.39%) of high concentration treatment (0.5% addition of pyrazole-pyridine sulfate mixture) at seedling stage were found in formula 1. Formula 2, low concentration treatment (pyrazole-pyridine hydrochloride mixture 0.125%), medium concentration treatment (pyrazole-pyridine sulfate mixture 0.25%) increased production by 10.69% and 5.89% respectively compared with one-off fertilization treatment, formula 2, low concentration treatment, The best nitrogen fertilizer utilization efficiency was 58.16% and 47.14% for low concentration treatment (0.125% pyrazole-pyridine sulfate mixture), respectively.
【学位授予单位】:东北农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S513

【相似文献】

相关期刊论文 前10条

1 朱兆华,王德汉,廖宗文,游植麟;氨氧化木质素作为硝化抑制剂的研究[J];土壤与环境;2000年02期

2 黄益宗,冯宗炜,王效科,张福珠;硝化抑制剂在农业上应用的研究进展[J];土壤通报;2002年04期

3 苏壮;脲酶/硝化抑制剂对土壤中尿素氮转化及其生物有效性的影响[J];沈阳农业大学学报;2005年02期

4 陈振华,陈利军,武志杰;脲酶-硝化抑制剂对减缓尿素转化产物氧化及淋溶的作用[J];应用生态学报;2005年02期

5 隽英华;陈利军;武志杰;史云峰;;脲酶/硝化抑制剂在土壤N转化过程中的作用[J];土壤通报;2007年04期

6 张妹婷;石美;梁东丽;沈锋;党虎玲;;不同硝化抑制剂对尿素转化的影响[J];西北农林科技大学学报(自然科学版);2011年02期

7 张媛;张磊;高志建;马军勇;;硝化抑制剂在滴灌小麦上的对比试验研究[J];石河子科技;2011年01期

8 傅丽;石元亮;苏壮;王玲莉;;不同硝化抑制剂的复配施用对尿素转化及土壤中氮的影响[J];土壤通报;2011年04期

9 王福钧;刘心生;彭根元;温贤芳;王宝忠;;应用同位素~(15)N研究硝化抑制剂对作物吸收氮素的影响[J];核农学报;1981年02期

10 Д.А.Филимонов;任胜云;;大麦在局部施肥同时施用硝化抑制剂时~(15)N—硫酸铵在土壤中转化、平衡和效果[J];原子能农业译丛;1986年01期

相关重要报纸文章 前2条

1 中化化肥高级顾问 中国农业大学教授 曹一平;硝化抑制剂成就稳定性氮肥[N];农资导报;2010年

2 河北省农林科学院情报所 高林森;硝化抑制剂缓释肥优点[N];河北科技报;2006年

相关博士学位论文 前1条

1 杨剑波;硝化抑制剂DMPP对氮素转化的影响及其作用机理研究[D];南京农业大学;2012年

相关硕士学位论文 前10条

1 段颜静;硝化抑制剂控释尿素在苹果上的施用效果[D];西北农林科技大学;2015年

2 胡军;生物硝化抑制剂在农业中的应用效果研究[D];南京农业大学;2014年

3 侯震东;硝化抑制剂硫脲对硝化过程的抑制特性研究[D];太原理工大学;2016年

4 刘阳阳;生物硝化抑制剂MHPP对拟南芥根系发育影响的分子机制[D];青海师范大学;2016年

5 姜亮;硝化抑制剂2-氯-6(三氯甲基)吡啶微胶囊对土壤氮素转化和玉米生长的影响[D];吉林农业大学;2016年

6 方玉凤;硝化抑制剂对尿素氮转化及玉米氮素利用和产量的影响[D];东北农业大学;2016年

7 张妹婷;石灰性土壤中不同硝化抑制剂的抑制效果及其机理探讨[D];西北农林科技大学;2010年

8 何秋香;硝化抑制剂的农业效应研究[D];华南热带农业大学;2004年

9 刘倩;硝化抑制剂对土壤的硝化抑制效应及其微生物作用机理[D];石河子大学;2011年

10 孙毓临;硝化抑制剂与作物秸秆混施对红壤中氮素矿化及金属活性的影响[D];湖南农业大学;2010年



本文编号:1827845

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/1827845.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户99d9d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com