区域碳排放效率评价与影响因素的空间计量分析
本文选题:碳排放效率 + SBM-Super模型和视窗分析技术 ; 参考:《安徽财经大学》2016年硕士论文
【摘要】:随着经济和社会的不断发展,伴随着经济增长和物质水平提高的同时,能源过度消耗和环境污染等问题随之出现。尤其是二氧化碳的过量排放所引起的温室气体效应和气候变暖等问题,给人们的生活与生产带来负面影响。在我国大力倡导节能减排、低碳发展的背景下,相关研究成为热点,有关碳排放效率及其影响的研究尚未形成统一的结论。本文基于前人的研究,对我国区域碳排放效率进行评价并对碳排放效率影响因素进行空间计量分析,主要内容如下:首先是碳排放效率评价部分。选择2005-2013年我国省际样本数据,运用IPCC清单法测算我国各省碳排放量,运用处理非期望产出的DEA模型,包括SBM-Super模型、视窗分析技术和Malmquist指数分解模型来测算和评价区域碳排放效率。结果表明:处于碳排放效率前沿面的省份占比全国23.3%,南部沿海经济综合区效率均值最高,西南经济综合区均值最低;部分年份中,黄河中游、南部沿海、长江中游这三个地区的碳排放效率差异呈现s收敛性;Malmquist指数分解结果表明技术进步是提高我国碳排放效率的主要动力。其次是碳排放效率影响因素的空间计量分析部分。根据现有文献,先对碳排放效率影响因素进行理论上的分析,然后运用空间计量方法和模型进行实证分析。我国碳排放效率呈现出显著的正向空间自相关性,即我国省际碳排放效率在空间的分布不是随机的,而是碳排放效率水平相近的省份呈现出相互依赖和“优势”集聚;我国局部High-High和Low-Low集聚的省份超过了60%,碳排放效率具有空间局域的依赖性,同时也存在一定的差异性。常参数空间计量模型结果显示,空间杜宾模型为拟合结果较优模型;影响因素的区域内溢出(直接效应)结果:人口结构、科技进步对于碳排放效率的直接效应显著为正,即这些变量值的增加会促进区域内碳排放效率的提高,消费水平、产业结构外贸依存度的直接效应为负,即区域内溢出为负;影响因素的区域间溢出(间接效应)结果:人口结构的间接效应显著为负,外贸依存度则显著为正,说明人口结构指标变量的增加、外贸依存度指标变量的减少对其他区域的碳排放效率产生抑制作用。空间变参数计量模型结果显示,指数距离权重的地理加权回归模型为拟合最优模型,在不同地位置上的省份,碳排放效率影响因素的影响力度和影响方向存在一定的差异性,其中外贸依存度对于碳排放效率影响程度在全国各省份中具有很大的差异性,除了中西部等地区外,外贸依存度对于其他各省碳排放效率的影响系数均为正。其次是人口结构、消费水平和产业结构。人口结构对各省碳排放效率的影响系数基本均为正,且对部分沿海经济发达地区的影响力度较大;消费水平和产业结构对各省碳排放效率的影响系数有正有负,波动变化;技术进步对碳排放效率的影响程度在全国各省份相近。最后,根据本文在实证过程中得到的结论,分别从合理规划城市规模;理性消费,低碳消费;加快转变经济发展方式,打造升级版产业结构;科学地引进外资,实现技术有效溢出;提高自主创新能力,加强产学研相结合这五个方面给出如何提高我国碳排放效率的相关政策建议。
[Abstract]:With the continuous development of economy and society, along with the economic growth and the improvement of the material level, the problems of excessive energy consumption and environmental pollution, especially the greenhouse gas effect and climate warming caused by excessive carbon dioxide emissions, have brought negative effects on people's life and production. In the background of energy saving and emission reduction and low carbon development, related research has become a hot spot. The research on carbon emission efficiency and its impact has not yet formed a unified conclusion. Based on previous studies, this paper evaluates the efficiency of China's regional carbon emission and carries out spatial econometric analysis on the influencing factors of carbon emission efficiency. The main contents are as follows: the first is the carbon emission. In the evaluation part of efficiency, we choose the interprovincial sample data in China for 2005-2013 years, calculate the carbon emissions of China's provinces by IPCC list method, use the DEA model to deal with undesired output, including the SBM-Super model, the window analysis technology and the Malmquist index decomposition model to estimate and evaluate the efficiency of the regional carbon emission. The frontier provinces accounted for 23.3% of the whole country, the average efficiency of the southern coastal economic zone was the highest and the southwest economic zone was the lowest. In some years, the carbon emission efficiency of the three regions in the middle reaches of the Yellow River, the southern coast and the middle reaches of the Yangtze River showed s convergence, and the Malmquist index decomposition results showed that technological progress was the improvement of carbon emissions in China. The second is the spatial econometric analysis of the factors affecting the efficiency of carbon emissions. Based on the existing literature, the theoretical analysis of the factors affecting the efficiency of carbon emissions is first analyzed, and then the spatial measurement method and model are used to carry out an empirical analysis. The distribution of carbon emission efficiency in space is not random, but the provinces with similar carbon emission efficiency have interdependence and "advantage" agglomeration. The local High-High and Low-Low provinces in our country have more than 60%, the carbon emission efficiency has spatial local dependence, and there are some differences. The results show that the spatial doberen model is a better model for the fitting results, and the result of the regional spillover (direct effect) of the influencing factors: the direct effect of the population structure and the progress of science and technology on the carbon emission efficiency is positive, that is, the increase of these variables will promote the increase of carbon emission efficiency in the region, the consumption level and the dependence on the foreign trade structure of the industrial structure. The direct effect is negative, that is, the intra regional spillover is negative, and the result of the interregional spillover (indirect effect) of the influencing factors: the indirect effect of the population structure is significantly negative, the dependence of foreign trade is significantly positive, the increase of the index variable of the population structure and the reduction of the index variable of the degree of dependence on the foreign trade dependence on the carbon emission efficiency of other regions. The result of the spatial variable parameter measurement model shows that the geo weighted regression model of the index distance weight is the optimal model. There is a certain difference between the influence force and the influence direction of the influence factors of the carbon emission efficiency in the provinces with different locations. The influence degree of the dependence on the carbon emission efficiency is in the provinces of the country. There are great differences. In addition to the central and western regions, the influence coefficient of the degree of dependence on the carbon emission efficiency of other provinces is positive. Secondly, the population structure, consumption level and industrial structure. The influence coefficient of population structure on the carbon emission efficiency of the provinces is basically positive, and the impact on some coastal economic developed areas is greater. The influence coefficient of consumption level and industrial structure on the carbon emission efficiency of all provinces is positive and fluctuant; the impact of technological progress on carbon emission efficiency is similar in all provinces in China. Finally, according to the conclusions obtained in the empirical process, the rational consumption and low carbon consumption are planned, and the economic development is accelerated. Ways to build up the industrial structure of the upgraded version; introduce foreign investment scientifically, realize the effective spillover of technology, improve the ability of independent innovation, and strengthen the combination of production, school and research in the five aspects to give relevant policy suggestions on how to improve China's carbon emission efficiency.
【学位授予单位】:安徽财经大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X321
【参考文献】
相关期刊论文 前10条
1 余敦涌;张雪花;刘文莹;;基于随机前沿分析方法的碳排放效率分析[J];中国人口·资源与环境;2015年S2期
2 张胜利;俞海山;;中国工业碳排放效率及其影响因素的空间计量分析[J];科技与经济;2015年04期
3 孙爱军;;省际出口贸易、空间溢出与碳排放效率——基于空间面板回归偏微分效应分解方法的实证[J];山西财经大学学报;2015年04期
4 李炫榆;宋海清;;区域减排合作路径探寻——基于结构效应与二氧化碳排放的空间面板数据实证分析[J];福建师范大学学报(哲学社会科学版);2015年01期
5 徐盈之;王书斌;;碳减排是否存在空间溢出效应?——基于省际面板数据的空间计量检验[J];中国地质大学学报(社会科学版);2015年01期
6 刘华军;张权;杨骞;;城镇化、空间溢出与区域经济增长——基于空间回归模型偏微分方法及中国的实证[J];农业技术经济;2014年10期
7 董锋;刘晓燕;龙如银;周德群;;基于三阶段DEA模型的我国碳排放效率分析[J];运筹与管理;2014年04期
8 张友国;郑玉歆;;碳强度约束的宏观效应和结构效应[J];中国工业经济;2014年06期
9 吴贤荣;张俊飚;田云;李鹏;;中国省域农业碳排放:测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用[J];资源科学;2014年01期
10 程叶青;王哲野;张守志;叶信岳;姜会明;;中国能源消费碳排放强度及其影响因素的空间计量[J];地理学报;2013年10期
相关博士学位论文 前3条
1 胡亚权;空间面板数据模型及其应用研究[D];华中科技大学;2012年
2 李超;比较优势、适宜性技术进步与中国现代产业发展[D];暨南大学;2012年
3 叶蔓;资源型城市经济可持续发展研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前2条
1 吴青青;我国省际绿色全要素生产率的空间计量分析[D];安徽财经大学;2015年
2 李卓霖;我国区域碳排放效率测度及影响因素分析[D];中国矿业大学;2014年
,本文编号:2020234
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2020234.html