贝叶斯方法下半参数混合模型在极端值的应用研究
[Abstract]:Extreme rare events have the characteristics of small probability and high loss intensity. The occurrence of their accidents will cause a large number of direct or indirect economic losses, which seriously threaten the stable operation of insurance companies. Therefore, the accurate prediction of extreme rare events is particularly important. At present, the method widely used for extreme rare event prediction is the extreme value theory, but The extreme value theory is very sensitive to the selection of the threshold, and it is the subjective judgment of the user. At the same time, the extremum theory can not evaluate the estimated parameters, can not understand the statistical characteristics of the parameters, and can not get the confidence interval of the parameters, but the Bayesian method can solve the problem well. This paper is based on the basis of extreme value theory. In this paper, a semi parametric hybrid model with piecewise addition is proposed. The threshold below is a semi parametric model which belongs to the category of numerical approximation. The above threshold is used in the generalized Pareto (GPD) distribution. The generalized Pareto model plays an important role in estimating the extreme subloci of rare events, especially for the fitting accuracy of heavy tail loss. In this paper, the Bayesian method is used to model, select the appropriate prior distribution of parameters, combine the likelihood function, deduce the posterior distribution of the mixed model, and then use Markov Montecarlo (MCMC) to sample the posterior distribution, get the frequency distribution map of the parameters, and then pass the sampling results to get the statistical characteristics of the parameters. In the selection of the threshold value, the threshold is selected. The semi parametric model is used in the following part of the model. The semi parametric model is a numerical approximation method. The theory is more mature and has a wide range of applications at home and abroad. However, the existing research has not been used in the Bayesian estimation and is not used in combination with the extreme value theory. Therefore, this paper is in the loss assessment study. The semi parametric model is introduced to achieve more accurate prediction results. In theory, the current popular extremum theory and parameter mixed model can be effectively improved. The empirical results show that the semi parametric model is better than the parameter model for the fitting effect of the lower part of the threshold. Finally, the prediction results of the loss distribution are more reasonable, and this is also the case. It provides an improved way for the prediction of the pinnacle thick tail data set. Therefore, this paper improves the accuracy of the peak tailing loss assessment and provides a new way for the loss prediction.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F224;F840.4
【相似文献】
相关期刊论文 前6条
1 任德记;高满军;李广民;;混合模型在大坝变形分析中的应用[J];水利科技与经济;2008年01期
2 尤芳;;Gibbs抽样在正态混合模型中的参数估计[J];统计与决策;2009年15期
3 连保胜;胡适耕;;R&D和边干边学的混合模型的稳定性分析[J];数学杂志;2007年03期
4 章伟;;混合模型在经济时间序列预测中的应用研究[J];计算机仿真;2011年06期
5 孙春华,周广证,朱灯林,朱雅萍;基于网络的模具CAD/CAM系统实现[J];机电产品开发与创新;2003年04期
6 ;[J];;年期
相关会议论文 前10条
1 沈乐君;;基于混合模型的多目标实时跟踪算法[A];2013体育计算机应用论文集[C];2013年
2 纪琳;黄震宇;;中频振动混合模型理论的应用局限性分析[A];现代振动与噪声技术(第九卷)[C];2011年
3 汪传建;李晓光;王大玲;于戈;;一种基于混合模型的文本分类器的研究与实现[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
4 徐斌;马尽文;;一种柯西混合模型上梯度型BYY和谐学习算法[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年
5 兰永红;吴敏;佘锦华;;基于二维混合模型的最优重复控制[A];第二十六届中国控制会议论文集[C];2007年
6 张胜利;张沅;;混合模型方法对QTL的检测及定位效果[A];生命科学与生物技术:中国科协第三届青年学术年会论文集[C];1998年
7 马凌;周江;王文鼐;;突发性业务流的Gamma泊松混合模型及排队性能研究[A];中国通信学会第五届学术年会论文集[C];2008年
8 沈文豪;聂大仕;谢菲;;气升式内环流反应器的液相流动混合模型[A];第一届全国化学工程与生物化工年会论文摘要集(上)[C];2004年
9 赵广建;,
本文编号:2175105
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2175105.html