当前位置:主页 > 经济论文 > 技术经济论文 >

柑橘单倍体—二倍体原生质体融合及其再生愈伤的倍性分析

发布时间:2018-08-27 12:54
【摘要】:柑橘是我国南方乃至世界上最重要的经济果树之一。虽然我国柑橘品种多样性丰富,但地方良种普遍多籽,影响了其商品价值,因而缺乏市场竞争力。原生质体融合能够较好地克服柑橘中普遍存在的多胚、雌/雄性器官败育、远缘杂交不亲和等生殖障碍,因而是创造新型种质并培育优良接穗及砧木的有效手段。目前通过细胞融合创制新种质应用较多的策略是用二倍体愈伤原生质体与二倍体叶肉原生质体对称融合的模式,用这种方法获得的四倍体植株作为亲本与二倍体进行倍性杂交培育三倍体,育种年限较长;相比之下,通过单倍体与二倍体融合能够直接获得三倍体,可大大缩短育种年限,提高育种效率。本研究拟借助前人建立的柑橘原生质体电融合技术体系,旨在通过单倍体-二倍体体细胞融合直接培育三倍体;另一方面通过常规的二倍体愈伤原生质体与二倍体叶肉原生质体的融合模式创造四倍体;此外,还对‘早金’甜橙单倍体和二倍体愈伤原生质体直径进行了统计比较。主要研究结果如下:1、单倍体愈伤原生质体与二倍体叶肉原生质体融合。以‘早金’甜橙单倍体为愈伤亲本,分别与‘鸡尾’葡萄柚、‘城固冰糖’橘、‘默科特’橘橙为叶肉亲本进行融合实验,其中‘早金’单倍体+‘默科特’橘橙再生出细胞团,而当双亲均为愈伤亲本时,成功再生出白色愈伤组织。通过流式细胞仪检测倍性,结果表明:‘早金’甜橙单倍体+‘默科特’橘橙再生愈伤的倍性较复杂,是一个混倍体,包含单倍体、二倍体、三倍体和四倍体。2、二倍体愈伤原生质体与二倍体叶肉原生质体融合创造四倍体体细胞杂种。以‘默科特’橘橙为愈伤亲本,分别与‘鸡尾’葡萄柚、‘桃叶’橙、‘南充本地’甜橙叶肉原生质体进行细胞融合,其中,‘默科特’橘橙+‘鸡尾’葡萄柚再生出愈伤组织。通过流式细胞仪对其倍性进行检测,结果表明,再生愈伤组织的倍性为二倍体与四倍体的混倍体。3、‘早金’甜橙单倍体与其二倍体的愈伤组织原生质体大小比较。分别统计了200个‘早金’甜橙二倍体及其单倍体的原生质体直径,结果表明:‘早金’甜橙二倍体悬浮系原生质体直径平均值为16.3μm,标准偏差为2.6;单倍体悬浮系原生质体直径平均值为14.6μm,标准偏差为2.8,表明二倍体体积较单倍体大且细胞长势更趋于一致。
[Abstract]:Citrus is one of the most important economic fruit trees in the south of China and even in the world. Although the variety of citrus varieties in China is rich, the local improved varieties are generally multi-seeded, which affects their commodity value and therefore lacks market competitiveness. Protoplast fusion is an effective method to create new germplasm and cultivate excellent scions and rootstocks because it can overcome the reproductive obstacles such as polyembryogenesis female / male organ abortion distant hybridization incompatibility and so on. At present, the strategy of using diploid callus protoplast and diploid mesophyll protoplast symmetrically fused with diploid mesophyll protoplasts is widely used to create new germplasm by cell fusion. The tetraploid plants obtained by this method were used as parents to cross with diploid to breed triploid, and the breeding time was longer, in contrast, triploid could be obtained directly by haploid and diploid fusion, and the breeding life could be shortened greatly. Improve breeding efficiency. The aim of this study was to cultivate triploid directly by haploid-diploid somatic fusion with the help of protoplast electrofusion system established by predecessors. On the other hand, tetraploid was created by conventional fusion model between diploid callus protoplasts and diploid mesophyll protoplasts, and the diploid and haploid diploid callus protoplasts were statistically compared. The main results were as follows: 1. The fusion of haploid callus protoplasts with diploid mesophyll protoplasts. The haploid of 'Zaojin' sweet orange was used as the callus parent, and the fusion experiment was carried out with the 'chicken tail' grapefruit 'Cenggu' Orange 'Orange' Merkett 'orange as the parent of mesophyll. 'Zaojin' haploid 'Merkett' orange regenerated cell mass, and white callus was successfully regenerated when both parents were callus parents. The ploidy was detected by flow cytometry. The results showed that the ploidy of regenerated calli of the haploid 'Merkett' orange of 'Zaojin' sweet orange was more complex, and it was a mixed ploidy, including haploid and diploid. Diploid callus protoplasts fused with diploid mesophyll protoplasts to create tetraploid somatic hybrids. The callus of 'Mercutt' orange was fused with the mesophyll protoplast of 'chicken tail' grapefruit 'peach leaf' orange 'Nanchong' sweet orange. Morcott, orange, chicken tail, grapefruit regenerate callus. The ploidy of regenerated callus was detected by flow cytometry. The results showed that the ploidy of regenerated callus was mixed ploidy of diploid and tetraploid. The size of protoplast of haploid and diploid callus was compared with that of haploid and diploid of sweet orange. The protoplast diploid and haploid diameter of 200 'Zaojin' sweet orange were calculated. The results showed that the average diameter of protoplast of the diploid suspension line was 16.3 渭 m, the standard deviation was 2.6 渭 m, and the average diameter of protoplast of haploid suspension was 14.6 渭 m, the standard deviation was 2.8, which indicated that the diploid was larger than haploid. Cell growth tends to be more consistent.
【学位授予单位】:华中农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S666

【相似文献】

相关期刊论文 前10条

1 朱河水;刘记强;杨国宇;仝千秋;张代;;原生质体融合技术的应用[J];安徽农业科学;2007年05期

2 丁朋晓;杨季芳;谢和;;原生质体融合技术及其在微生物遗传育种上的应用[J];贵州农业科学;2007年03期

3 大政正武;王彩莲;;利用营养突变体进行粗皮北风菌种内原生质体融合[J];核农学通报;1987年05期

4 王璋瑜;;激光诱导的单个原生质体融合[J];生物技术通报;1988年12期

5 朱昌雄,谢德龄,粟燕,倪楚芳;利用原生质体融合技术选育农抗120高产菌株及应用的研究[J];生物防治通报;1990年01期

6 大西敏夫;柴山庆三;田道宏至;朱勇;;用聚乙二醇法进行桑和构树的原生质体融合[J];蚕学通讯;1990年04期

7 赵连元;纪芸;段胜军;严丽兰;;谷子原生质体融合技术[J];河北农业科学;1992年01期

8 赖钟雄,何碧珠,,潘良镇;原生质体融合技术在果树品种改良上的应用[J];世界农业;1996年12期

9 彭帮柱,岳田利,袁亚宏,王丽威;酵母菌原生质体融合技术[J];西北农业学报;2004年01期

10 王春平;韦强;鲍国连;刘燕;邵泽香;季权安;;微生物原生质体融合技术研究进展[J];动物医学进展;2008年05期

相关会议论文 前6条

1 余志晟;张洪勋;庄绪亮;;运用原生质体融合技术构建内醚糖乙醇发酵菌株的初步研究[A];微生物生态学研究进展——第五届微生物生态学术研讨会论文集[C];2003年

2 朱昌雄;谢德龄;粟燕;倪楚芳;;利用原生质体融合技术选育农抗120高产菌株及应用的研究[A];全国生物防治学术讨论会论文集[C];1991年

3 杨丽梅;E.Jacobsen;M.S.Ramanna;M.Bergervoet;D J.Huigen;;茄科植物属间及种间原生质体融合及其检测[A];中国科协第3届青年学术年会园艺学卫星会议暨中国园艺学会第2届青年学术讨论会论文集[C];1998年

4 雷爱莹;;微生物原生质体融合技术在净化水质上的应用[A];广西水产研究所论文集(2001—2005)[C];2006年

5 孙振久;王松文;刘霞;;电场条件对甘蓝与萝卜原生质体融合效果的影响[A];21世纪作物科技与生产发展学术讨论会论文集[C];2002年

6 林峻;何云霞;施碧红;王明兹;施巧琴;;碱性脂肪酶基因组改组技术平台的建立[A];2006中国微生物学会第九次全国会员代表大会暨学术年会论文摘要集[C];2006年

相关博士学位论文 前2条

1 江年琼;三白草和鱼腥草原生质体融合的研究[D];中南林学院;2002年

2 刘秋;抗真菌生物农药—凯地菌素的研究[D];沈阳农业大学;2002年

相关硕士学位论文 前10条

1 谢瑞;杆菌肽高产菌株的选育及发酵条件优化[D];福建师范大学;2015年

2 赵慧;原生质体融合选育高产罗尔阿太菌多糖菌株及放大培养工艺优化[D];吉林农业大学;2015年

3 闫冬;Paenibacillus polymyxa JSa-9抗菌肽高产菌选育及突变株表达差异分析[D];南京农业大学;2014年

4 张禹;原生质体融合法选育分解草酸乳酸菌[D];天津科技大学;2013年

5 王国正;玉蕈与金针菇原生质体融合研究[D];天津师范大学;2016年

6 王迪;淀粉基二十二碳六烯酸菌种的构建[D];天津科技大学;2015年

7 陈智炜;柑橘单倍体—二倍体原生质体融合及其再生愈伤的倍性分析[D];华中农业大学;2016年

8 徐新丽;原生质体融合选育纤维素发酵产脂菌株[D];福建师范大学;2009年

9 李建洲;产碱性果胶酶菌株的原生质体融合育种[D];江南大学;2005年

10 张建;利用原生质体融合技术构建纤维燃料乙醇全糖发酵高产菌株[D];河南农业大学;2007年



本文编号:2207350

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2207350.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户366cf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com