当前位置:主页 > 经济论文 > 技术经济论文 >

风荷载作用下建筑结构动力响应研究

发布时间:2019-06-30 22:55
【摘要】:随着经济发展,城市化进程的加快,越来越多的高层建筑涌现,并且正朝着大长化和轻柔化的趋势发展,而在结构设计中被我们忽视的风荷载作用给高层建筑带来的问题变得尤为突出,甚至有时风荷载在复杂的荷载效应组合中起决定性作用。风荷载具有的随机特征和动力特征决定了其引起的结构响应异常复杂,在结构设计中单纯的简化计算难以反映实际工程真正的受风状态。因此,为了满足建筑物安全性、适用性、舒适性的要求,深化抗风设计理念,开展对风荷载作用下建筑结构动力响应的研究工作具有重要的意义。本文通过模拟空间风场,结合工程实例,对剪力墙结构与框架-核心筒结构进行了风振响应分析,主要研究内容如下:(1)分析了风荷载作用下的剪力墙结构与框架核心筒结构简化模型的变形特点,结合工程实例建立了有限元模型,并施加了动力风荷载进行分析。通过得到的位移响应验证了理论分析的正确性。(2)结合工程所在地基本风压统计数据,采用线性滤波法实现了对现实状态中脉动风场的模拟,获得了风荷载时程曲线。通过对时间、频率等参数的反复调整,使模拟结果达到了预期的精度要求。(3)基于平面尺寸、建筑立面、荷载工况等因素都相同的条件,对结构选型为剪力墙结构的建筑与选型为框架-核心筒结构的建筑作了风振动力响应时域分析。从位移变化、速度变化、内力变化等方面综合分析认为框架-核心筒结构选型的建筑在动力风荷载作用下更稳定。(4)基于原框架-核心筒建筑模型,分别调整了框架与核心筒的抗侧刚度,进行了风振响应对比分析。研究表明在此类结构中,框架部分刚度的增加会对控制侧移有更大的作用,但过分强调增加刚度会引起风振加速度与构件应力的增大,会降低舒适度,也增大了结构破坏的风险。(5)基于原剪力墙建筑模型,调整了剪力墙布置位置,进行了风振响应对比分析。研究表明在此类结构中剪力墙边缘布置会提升结构的整体刚度,对控制侧移有利,但不利于控制风振加速度和底部应力。
[Abstract]:With the development of economy and the acceleration of urbanization, more and more high-rise buildings are emerging, and they are developing towards the trend of long and gentle. The wind load, which is neglected by us in structural design, has become particularly prominent, and sometimes wind load plays a decisive role in the complex combination of load effects. The random and dynamic characteristics of wind load determine that the structural response caused by wind load is extremely complex, so it is difficult to reflect the real wind state of actual engineering by simple simplified calculation in structural design. Therefore, in order to meet the requirements of building safety, applicability and comfort, it is of great significance to deepen the concept of wind-resistant design and to carry out the research on the dynamic response of building structures under wind load. In this paper, the wind-induced vibration response of shear wall structure and frame-core tube structure is analyzed by simulating the spatial wind field and combining with an engineering example. The main research contents are as follows: (1) the deformation characteristics of the simplified model of shear wall structure and frame core tube structure under wind load are analyzed, the finite element model is established with an engineering example, and the dynamic wind load is applied to analyze it. The correctness of the theoretical analysis is verified by the obtained displacement response. (2) combined with the basic wind pressure statistical data of the project location, the linear filtering method is used to simulate the fluctuating wind field in the real state, and the time history curve of wind load is obtained. Through the repeated adjustment of time, frequency and other parameters, the simulation results meet the expected accuracy requirements. (3) based on the same factors such as plane size, building facade, load condition and so on, the time domain analysis of wind-induced dynamic response of buildings with shear wall structure and frame-core tube structure is carried out. From the aspects of displacement change, velocity change, internal force change and so on, it is considered that the selected structure of frame-core tube structure is more stable under dynamic wind load. (4) based on the original frame-core tube building model, the lateral stiffness of frame and core tube is adjusted respectively, and the wind-induced vibration response is compared and analyzed. The results show that the increase of partial stiffness of the frame will have a greater effect on the control of lateral displacement, but overemphasis on the increase of stiffness will lead to the increase of wind-induced acceleration and member stress, which will reduce the comfort and increase the risk of structural failure. (5) based on the original shear wall building model, the arrangement position of shear wall is adjusted, and the wind-induced vibration response is compared and analyzed. The results show that the edge arrangement of shear wall in this kind of structure can improve the overall stiffness of the structure, which is beneficial to the control of lateral displacement, but not conducive to the control of wind-induced vibration acceleration and bottom stress.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU311.3

【参考文献】

相关期刊论文 前4条

1 李仁年;刘有亮;;大型风力机叶片铺层及模态分析[J];太阳能学报;2015年01期

2 孙威;赵峰;;高耸雁型输电塔结构自振周期的二维简化分析[J];工程建设与设计;2011年11期

3 徐培福;王翠坤;肖从真;;中国高层建筑结构发展与展望[J];建筑结构;2009年09期

4 顾明;叶丰;;高层建筑风致响应和等效静力风荷载的特征[J];工程力学;2006年07期

相关博士学位论文 前1条

1 钟振宇;超高层建筑风重耦合效应及等效静力风荷载研究[D];浙江大学;2014年

相关硕士学位论文 前10条

1 胡淼;某超限高层建筑风荷载及风致振动研究[D];合肥工业大学;2015年

2 王新锋;高层建筑风荷载作用下的动力响应分析[D];西南石油大学;2014年

3 王博;风荷载作用下高耸塔架结构的动力响应[D];兰州理工大学;2014年

4 赵蒙;高层框架—剪力墙结构的剪力墙合理布置研究[D];成都理工大学;2014年

5 汤志云;输电塔线体系在风荷载作用下的位移响应[D];广东工业大学;2013年

6 甘高凡;高层建筑风效应的数值模拟研究及等效静力风荷载计算[D];广州大学;2012年

7 孔鹏;高层建筑等效静风荷载及结构风致响应研究[D];华南理工大学;2012年

8 宋克;超高层建筑风振与等效风荷载研究[D];湖南大学;2009年

9 杨晓利;超限剪力墙高层结构在风荷载作用下的结构响应研究[D];武汉理工大学;2009年

10 王玉;L形短肢剪力墙的抗震性能研究[D];合肥工业大学;2009年



本文编号:2508319

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2508319.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6ef6a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com