基于CPM-RBF模型的区域土地生态安全预警研究
本文关键词:基于CPM-RBF模型的区域土地生态安全预警研究 出处:《中国地质大学(北京)》2015年硕士论文 论文类型:学位论文
更多相关文章: 土地生态安全 预警 指标体系 CPM-RBF模型
【摘要】:健康的土地生态系统是维系区域生态安全的重要因素,开展区域土地生态安全预警研究,分析土地生态安全警情演变状况,是新形势下建设生态文明建设现实需要,也是进一步完善土地生态安全研究的理论需求。为此,本文以山西省临汾市尧都区为研究区域,以土地生态安全相关理论为理论指导,采用突变级数法和径向基函数神经网络模型开展了区域土地生态安全预警研究。本文主要开展了以下几个方面内容的研究:(1)对国内外相关研究进行综述性介绍与回顾,探讨不同研究内容与技术方法的侧重点,明晰本文研究的起点;(2)分析研究区土地生态安全现状,指出区域土地生态安全面临的形势;(3)在分析“压力—状态—响应”(PSR)框架模型和“自然—经济—社会”(NES)框架模型各自特点的基础上,构建基于PSR-NES框架模型的区域土地生态安全预警指标体系;(4)引入常见突变模型创建了研究区土地生态安全警情分析模型,运用突变级数法对土地生态安全警情变化进行分析;(5)在Matlab中直接调用径向基函数,运用RBF神经网络对区域土地生态安全警情演变趋势进行预测。通过对以上内容进行研究,得出以下结论:(1)经济和社会因素是造成区域土地生态安全动态演变的主要因素;(2)PSR-NES框架模型的区域土地生态安全预警指标体系较为全面且有针对性,有助于判断区域土地生态安全真实状态以及发现土地生态安全演变过程中存在的问题;(3)突变级数法含义较为明晰,可操作性强,减少预警过程中人为主观性影响,应用于土地生态安全预警研究是一个较好的尝试;(4)RBF神经网络具有训练速度快、能收敛到全局最优点等特点,能够不断的学习确定径向基函数的最优参数,提高警情预测精度;(5)构建了土地生态安全预警的CPM-RBF模型,整个过程逻辑性强、思路清晰。本文的创新点是将突变理论运用到土地生态安全预警研究中,运用突变级数法对土地生态安全警情变化进行了分析,运用RBF神经网络对警情演变趋势进行预测,但是该研究还存在一些有待改进之处,预警指标体系有待进一步优化,警情等级划分标准需要进一步探讨,这些都有待后续研究进一步完善,本文仅仅为区域土地生态安全预警研究在方法上提供了一种新的思路。
[Abstract]:Healthy land ecosystem is an important factor to maintain regional ecological security. It is the realistic need of constructing ecological civilization under the new situation, and is also the theoretical demand to further improve the study of land ecological security. Therefore, this paper takes Yaodu District, Linfen City, Shanxi Province as the research area. It is guided by the theory of land ecological security. Using the catastrophe series method and the radial basis function neural network model, the early warning study of regional land ecological security is carried out. The related research at home and abroad is reviewed and reviewed. The emphasis of different research contents and technical methods is discussed, and the starting point of this study is clarified. 2) analyzing the present situation of land ecological security in the research area and pointing out the situation that the regional land ecological security is facing; 3) based on the analysis of the characteristics of the "pressure-state-response" (PSR) framework model and the "natural-economic-social" (NES) framework model. Constructing the early warning index system of regional land ecological security based on PSR-NES framework model; 4) introducing the common catastrophe model to establish the analysis model of the land ecological security in the study area, and analyzing the change of the land ecological security alarm by using the catastrophe series method. 5) the radial basis function is called directly in Matlab, and RBF neural network is used to predict the evolution trend of regional land ecological security. The following conclusions are drawn: (1) Economic and social factors are the main factors that cause the dynamic evolution of regional land ecological security; The early warning index system of regional land ecological security based on PSR-NES framework model is comprehensive and targeted. It is helpful to judge the real state of regional land ecological security and to find out the problems existing in the evolution of land ecological security. (3) the sudden change series method has a clear meaning and strong maneuverability, so it is a good attempt to reduce the human subjectivity in the early warning process and to apply it to the study of land ecological security early warning. The RBF neural network has the characteristics of fast training speed, converging to the global optimum and so on. It can continuously learn to determine the optimal parameters of the radial basis function and improve the prediction accuracy of the warning situation. 5) the CPM-RBF model of land ecological security warning is constructed, the whole process is logical and the idea is clear. The innovation of this paper is to apply the catastrophe theory to the study of land ecological security early warning. The sudden change series method is used to analyze the changes of land ecological security alarm situation, and the RBF neural network is used to predict the trend of police situation evolution. However, there are still some problems to be improved in this study. The early warning index system needs to be further optimized, and the criteria for classification of police situation grades need to be further explored, all of which need to be further improved in the follow-up study. This paper only provides a new way for the study of early warning of regional land ecological security.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F301;X171.1
【参考文献】
相关期刊论文 前10条
1 刘庆;陈利根;舒帮荣;胡雁娟;;长株潭城市群土地生态安全动态评价研究[J];长江流域资源与环境;2010年10期
2 代路;雷国平;姜博;袁兆华;张慧;;基于生态经济系统的佳木斯市耕地质量预警分析[J];东北农业大学学报(社会科学版);2010年02期
3 李明月;赖笑娟;;基于BP神经网络方法的城市土地生态安全评价——以广州市为例[J];经济地理;2011年02期
4 邓爱珍;陈美球;林建平;;鄱阳湖区土地生态安全评价[J];江西农业大学学报;2006年05期
5 高奇;师学义;王子凌;李海明;;基于PSR-FUZZY模型的土地利用总体规划实施评价研究[J];江西农业大学学报;2013年02期
6 李志刚,刘晓春;中国的生态安全问题[J];生态经济;2002年08期
7 李静;李子君;吕建树;;聊城市土地生态安全评价[J];水土保持通报;2011年02期
8 李中才;刘林德;孙玉峰;崔金荣;;基于PSR方法的区域生态安全评价[J];生态学报;2010年23期
9 伊燕平;卢文喜;张耘;芦贵君;王大中;洪德法;;基于径向基函数神经网络的地下水数值模拟模型的替代模型研究[J];水土保持研究;2012年04期
10 李智国;杨子生;;中国土地生态安全研究进展[J];中国安全科学学报;2007年12期
,本文编号:1356639
本文链接:https://www.wllwen.com/jingjilunwen/nongyejingjilunwen/1356639.html