矿业资本海外投资安全分析
发布时间:2018-01-27 04:05
本文关键词: 矿业投资 风险分析 G1变异系数法 量子粒子群 辅助决策系统 出处:《中南大学》2014年硕士论文 论文类型:学位论文
【摘要】:摘要:矿业资本海外投资安全分析是一项非常复杂的系统工程,涉及的风险有:政治、经济、金融、环保、技术等风险因素。矿业投资项目的决策是矿业投资中重要的一环。因此对矿业资本海外投资涉及的风险进行系统分析,以及对决策分析中所依据的评价方法进行研究,对于中国矿业企业海外投资做出合理的决策,减少投资风险,确保中国矿业资本海外投资的安全,具有一定的意义。 本文首先对矿业资本海外投资的风险因素进行了系统分析;针对具体项目本身,对于重要的敏感因素——矿产品价格,进行了价格预测的研究;然后,探讨了项目决策分析方法;最后介绍了矿业资本投资辅助决策系统。主要研究成果如下: (1)利用群体智能算法,结合人工神经网络构建了矿产品价格预测模型,预测精度以及神经网络模型的泛化能力都较传统模型要好。 (2)从系统开发的角度出发,进行了软件设计流程的需求分析、系统设计分析,对主要功能进行了较为详尽的介绍,最后给出了系统在实际项目中的应用实例。 (3)系统分析了矿业资本海外投资中存在的风险因素,建立了基于G1变异系数法的铀资源项目海外投资决策模型,对铀资源项目海外投资风险评价进行了实例研究。
[Abstract]:Absrtact: overseas investment safety analysis of mining capital is a very complex systematic project, which involves political, economic, financial and environmental protection risks. Technology and other risk factors. The decision of mining investment project is an important part of mining investment. Therefore, the risks involved in overseas investment of mining capital are systematically analyzed. And the evaluation method based on decision-making analysis is studied to make reasonable decision for overseas investment of Chinese mining enterprises, reduce investment risk and ensure the safety of overseas investment of Chinese mining capital. Have certain meaning. In this paper, the risk factors of overseas investment of mining capital are analyzed systematically. In the light of the specific project itself, the price prediction of mineral products, which is an important sensitive factor, is studied. Then, the project decision analysis method is discussed. Finally, the auxiliary decision system of mining capital investment is introduced. The main research results are as follows: 1) the prediction model of mineral product price is constructed by using swarm intelligence algorithm and artificial neural network. The prediction accuracy and generalization ability of neural network model are better than that of traditional model. From the point of view of system development, the requirement analysis of software design flow and system design analysis are carried out, and the main functions are introduced in detail. Finally, the application example of the system in the actual project is given. The risk factors in overseas investment of mining capital are analyzed systematically, and the decision model of overseas investment of uranium resource project based on G1 variation coefficient method is established. A case study on risk assessment of overseas investment of uranium resources project is carried out.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP183;F426.1;F125.5
【共引文献】
相关期刊论文 前2条
1 王金凤;翟雪琪;冯立杰;;基于SVR的煤矿安全资源与安全状态作用机理模型[J];煤矿安全;2014年06期
2 龚承柱;李兰兰;杨娟;诸克军;;基于EMD-PSR-LSSVM的城市燃气管网短期负荷预测[J];系统工程理论与实践;2014年11期
相关博士学位论文 前1条
1 李俊芳;电梯交通流量特性分析及预测方法研究[D];天津大学;2013年
相关硕士学位论文 前3条
1 李明皓;基于混合离散粒子群算法的焊接机器人路径规划[D];华东理工大学;2014年
2 沈林;基于头脑风暴算法优化的v-SVR的研究及应用[D];兰州大学;2014年
3 樊澍;基于量子粒子群的电子鼻伤口感染检测算法研究[D];重庆大学;2014年
,本文编号:1467515
本文链接:https://www.wllwen.com/jingjilunwen/shijiejingjilunwen/1467515.html