矿用可移动式救生舱结构设计及抗爆隔热性能研究
本文关键词: 可移动式救生舱 结构设计 爆炸冲击 动态响应 热防护 出处:《太原理工大学》2016年博士论文 论文类型:学位论文
【摘要】:瓦斯爆炸是引发煤矿重特大事故的主要因素,其瞬间破坏力巨大、易发生二次爆炸,导致人员伤亡严重。使用紧急避险系统可以增加井下遇险人员的生存机会,提高矿难救援工作的效率。矿用可移动式救生舱具有移动性强、启动时间短、安装简单的特点,成为井下避险的重要装备。本文首先对矿用可移动式救生舱进行结构设计,研究了其在爆炸冲击载荷作用下的动态响应,并分析了爆炸冲击及高温冲击与救生舱的耦合作用,为救生舱的结构改进和安全使用提供科学依据。(1)根据《煤矿可移动式救生舱通用技术条件》的设计要求,对救生舱舱体结构设计进行了理论分析,并结合井下生产的具体特点,确定舱体结构形式和尺寸设计,同时利用三维建模软件UG NX8.0,概念化设计了救生舱几何模型。(2)利用ANSYS Workbench中的Explicit dynamics模块和AUTODYN显式动力学分析软件,建立了流-固耦合仿真平台;运用TNT当量法,以TNT代替瓦斯,对设有救生舱的巷道中瓦斯爆炸冲击波传播过程进行了数值模拟;并分析了救生舱在超压载荷作用下的整体动力学响应过程。在巷道爆炸仿真中对78.24 kg、68.377 kg和61.36 kg三种TNT炸药量下的超压曲线进行了对比分析,并最终选用68.377 kg TNT药量下救生舱各表面的爆炸冲击波超压曲线作为载荷施加条件。(3)将上述流固耦合模拟得到的真实爆炸冲击载荷曲线分别加载到救生舱舱体不同的面,分析了救生舱结构在爆炸载荷作用下产生的应力及变形,根据屈服准则给出了等效应力、等效塑性应变的时程曲线、变形分布云图,确定了最大应力与最大变形的位置,依据判定准则评判了舱体结构是否受到破坏,校验了本文所设计的救生舱在爆炸载荷作用下的安全性和可靠性。结果表明,救生舱整体变形量最大为11.145 mm,符合安全准则中对救生舱板壳最大变形挠度和变形量不超过2%或20 mm的的数值范围;救生舱前门系统、后门系统、法兰、外蒙皮最大应力均小于所选材料的屈服强度,骨架虽然可能存在导致局部屈服的应力集中问题,但并不会影响救生舱的整体安全性能。(4)根据《煤矿可移动式硬体救生舱通用技术条件》的规范要求,对所设计的矿用可移动式救生舱分别在持续高温和瞬时高温两种环境下的热防护性能进行了数值模拟分析,利用ANSYS Workbench中的Transient Thermal模块与Static Structural模块耦合,得到该舱体结构的温度场分布云图、温度变化曲线、热应力以及热变形数据。结果表明,舱体在持续高温热载下,内部的最大等效热应力为243.36MPa,而在瞬时高温热载下,舱体内部产生的最大等效应力为262.14MPa,均低于材料的屈服强度345 MPa。舱体在持续高温下,整体产生的最大热变形为0.556 mm,瞬时高温下,整体产生的最大变形为0.6496 mm,变形量均较小,不足导致舱体变形过大而发生破坏。
[Abstract]:The gas explosion is the main factor that causes the coal mine serious accident, its instantaneous destructive power is huge, easy to happen the second explosion, causes the person to be injured seriously, the use of the emergency shelter system may increase the underground distress person's survival opportunity, In order to improve the efficiency of mine rescue work, the movable lifebuoy in mine has the characteristics of strong mobility, short start-up time and simple installation, so it becomes an important equipment for avoiding risks underground. This paper first designs the structure of movable lifebuoy in mine. In this paper, the dynamic response to explosion shock load is studied, and the coupling effect between explosion shock and high temperature shock and lifebuoy is analyzed. This paper provides a scientific basis for the structural improvement and safe use of the lifebuoy. 1) according to the design requirements of the general technical conditions of movable lifebuoys in coal mines, the structural design of the lifebuoys is theoretically analyzed and combined with the specific characteristics of underground production. The structural form and dimension design of the cabin are determined. At the same time, using the 3D modeling software UG NX8.0 and conceptualizing the geometric model of the lifebuoy, a simulation platform of fluid-solid coupling is established by using the Explicit dynamics module in ANSYS Workbench and the explicit dynamic analysis software of AUTODYN. By using TNT equivalent method and TNT instead of gas, the propagation process of gas explosion shock wave in roadway with lifebuoy is simulated numerically. The whole dynamic response process of lifebuoy under overpressure load is analyzed. In the simulation of tunnel explosion, the overpressure curves of 78.24 kg / 68.377kg and 61.36kg / kg TNT explosives are compared and analyzed. Finally, the explosion shock wave overpressure curve of each surface of the lifebuoy cabin under 68.377 kg TNT charge is selected as the load application condition. (3) the real explosion shock load curve obtained by the fluid-solid coupling simulation is loaded into different surfaces of the lifebuoy cabin respectively. The stress and deformation of the lifebuoy structure under explosive loading are analyzed. According to the yield criterion, the time history curves of equivalent stress, equivalent plastic strain and the cloud diagram of deformation distribution are given, and the position of maximum stress and maximum deformation is determined. According to the criterion of judging whether the cabin structure is damaged or not, the safety and reliability of the lifebuoy designed in this paper under the action of explosion load are verified. The maximum overall deformation of the lifebuoy is 11.145mm, which conforms to the maximum deformation deflection and deformation of the shell of the lifebuoy not exceeding 2% or 20mm in accordance with the safety criteria; the front door system, rear door system, flange, The maximum stress of the outer skin is less than the yield strength of the selected material. Although the skeleton may have the problem of stress concentration which leads to local yield, However, it will not affect the overall safety performance of the lifebuoy. 4) in accordance with the requirements of the General Technical conditions for Mobile rigid lifebuoys in Coal Mines, In this paper, the thermal protection performance of the mine movable lifebuoy is simulated and analyzed under the two environments of continuous high temperature and instantaneous high temperature respectively. The Transient Thermal module in ANSYS Workbench is coupled with the Static Structural module. The data of temperature field distribution, temperature change curve, thermal stress and thermal deformation of the cabin structure are obtained. The results show that the maximum equivalent thermal stress of the cabin is 243.36 MPA under continuous high temperature hot load, and the maximum equivalent thermal stress is 243.36 MPA under instantaneous high temperature hot load. The maximum equivalent stress generated in the cabin is 262.14 MPA, which is lower than the yield strength of the material 345 MPA. Under the continuous high temperature, the maximum thermal deformation of the whole is 0.556 mm, and the maximum deformation of the whole is 0.6496 mm at the instantaneous high temperature. Deficiency causes the cabin to be deformed and destroyed.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TD774
【相似文献】
相关期刊论文 前10条
1 余茂君;;矿用救生舱诞生记[J];劳动保护;2010年05期
2 木子林;;山西五大煤矿集团开始配备井下救生舱[J];山西能源与节能;2010年05期
3 本刊通讯员;;中国首台矿用救生舱制成可容纳10人避险4天[J];煤炭工程;2010年12期
4 ;矿用可移动救生舱样舱制成 可保10人96小时生存[J];生命与灾害;2010年12期
5 艾长波;;矿用救生舱国内外发展概况[J];舰船防化;2010年06期
6 巩宪武;;西安重装集团与中资国泰公司签署井下救生舱生产合作协议[J];陕西煤炭;2011年03期
7 许健;李长录;王凯;;救生舱的生存温度保障[J];煤矿安全;2011年08期
8 汪声;金龙哲;栗婧;汪澍;;矿用救生舱热环境分析[J];煤炭学报;2011年09期
9 ;我国第一台矿用可分离式救生舱问世[J];煤矿机械;2011年09期
10 韩文达;刘铁军;刘贵强;史功赫;李国庆;;矿用安全救生舱的发展趋势研究[J];煤矿机械;2011年10期
相关会议论文 前7条
1 盛伟;王强;刘秀芳;郑丽娜;;蓄冷型空调机在矿用救生舱中的应用[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
2 李波;刘安翔;刘洪波;;救生舱风机控制器的设计[A];第三届全国煤矿机械安全装备技术发展高层论坛暨新产品技术交流会论文集[C];2012年
3 周旭;杨陆海;;矿用救生舱配置原则与应用研究[A];中国采选技术十年回顾与展望[C];2012年
4 张婷;;矿用救生舱焊接部位数值模拟处理方法分析[A];第五届全国计算爆炸力学会议论文摘要[C];2012年
5 白博;李志强;王志华;赵隆茂;;矿用井下救生舱抗爆炸冲击性能研究[A];第五届全国计算爆炸力学会议论文摘要[C];2012年
6 李长有;程晓琦;张胜奎;;基于SHT75的矿井救生舱温湿度检测[A];2010中国仪器仪表学术、产业大会(论文集2)[C];2010年
7 王晶晶;武会宾;张鹏程;巨彪;;Q460级矿用救生舱用钢的组织与析出相研究[A];2014年全国钢材深加工研讨会论文集[C];2014年
相关重要报纸文章 前10条
1 实习记者 李拓 刘冰;井下矿工的生命港湾[N];中国煤炭报;2010年
2 记者 林玉 施智梁;矿用救生舱亮相千亿蛋糕待分食[N];经济参考报;2010年
3 ;矿难救生舱将全智利巡游[N];新华每日电讯;2010年
4 记者 吴宇 吴陈;世博会智利馆将展矿难救生舱[N];新华每日电讯;2010年
5 王欢 整理;救生舱:矿难中的生命庇护所[N];中国矿业报;2010年
6 记者 陈波;重庆造救生舱下月正式下井[N];重庆日报;2010年
7 本报记者 任s,
本文编号:1516311
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1516311.html