当前位置:主页 > 科技论文 > 安全工程论文 >

海上人命损失规律及个人风险可接受标准研究

发布时间:2018-03-04 16:12

  本文选题:海上人命损失 切入点:规律 出处:《大连海事大学》2016年博士论文 论文类型:学位论文


【摘要】:当前阶段海上交通安全特点已经发生显著变化,研究当下海上人命损失特点,对于提高海上人命安全防护能力具有重要意义。论文在既往研究的基础上,明确了相关的研究目标、思路和任务,围绕海上人命损失规律、趋势和可接受标准等开展了以下几方面的研究。首先,研究海上人命损失的分布、时间、形态和致死率特征,定量分析海上人命损失的总体规律。其次,利用Apriori算法对造成海上人命损失的事故属性进行了多维关联规则挖掘研究,发现了关于海上交通事故与船上操作事故间的重要关联规则,揭示了海上交通安全与船上操作安全具有紧密联系,提出了预防海上人命损失的对策。再次,研究了基于自回归滑动平均模型(Autoregressive Integrated Moving Average Model, ARIMA)和支持向量机(Support Vector Machine, SVM)的海上人命损失组合预测模型。预防海上人命损失一直是海上交通安全研究和实践的焦点。针对现有海上人命损失预测方法的不足,提出了一种基于ARIMA模型和SVM方法相结合的预测模型。首先采用ARIMA模型对时间序列线性部分建模分析,然后采用SVM模型对非线性部分进行建模。经验证,组合模型相对于单模型的预测具有更高的精度,该组合预测模型是一种有效的海上人命损失预测模型。最后,应用帕累托(Pareto)最优等理论研究了海上个人风险可接受标准(Marine Individual Risk Acceptance Criteria, MIRAC) o针对当前海上交通领域尚未建立一个被广泛接受的风险标准的现状,在定义MIRAC概念和阈值确定原则的基础上,基于Pareto最优原理确定了符合实际的MIRAC阈值,回答了海上交通安全系统“到底多安全才够安全”的经典问题。
[Abstract]:The characteristics of the current stage of maritime traffic safety has changed significantly, the current research of loss of life at sea, has an important significance for improving the safety of life at sea protection. Based on the previous research, the research target, ideas and tasks around the loss of life at sea, trend and acceptance criteria to carry out research in the following aspects. Firstly, the distribution of life at sea, the loss of time, morphology and mortality characteristics, quantitative analysis of overall loss of life at sea. Secondly, the accident caused loss of life at sea attribute of multidimensional association rule mining based on Apriori algorithm, found out about the operation of important association rules between the maritime traffic accident the accident with the boat, reveals is closely related to safe operation of maritime traffic safety and ship, puts forward some countermeasures for preventing the loss of life at sea. Again, the research on the autoregressive moving average model (Autoregressive Integrated Moving Average Model, ARIMA) and support vector machine (Support Vector Machine, SVM) the loss of life at sea, the combination forecasting model. To prevent loss of life at sea has been the focus of maritime traffic safety research and practice. Aiming at the shortage of the existing prediction methods of the loss of life at sea. Put forward a kind of ARIMA model and SVM method based on the combination forecast model. Firstly, by the analysis of ARIMA model of linear time series modeling, and then use SVM model to model the nonlinear part. After verification, compared to the single model prediction model combined with higher accuracy, the combination forecasting model is an effective sea loss of life prediction model. Finally, the application of Pareto (Pareto) optimal theory to study the risk of maritime personal acceptance criteria (Marine Individual Risk Acceptance Criteria, MIRAC o) according to the current status of maritime traffic field has not yet established a widely accepted risk criteria, based on determining the principles define the concept of MIRAC and the threshold, the Pareto optimal principle to determine the MIRAC threshold based on the practical, answered the classic problem of maritime traffic safety system is safe enough security ".

【学位授予单位】:大连海事大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:U698

【参考文献】

相关期刊论文 前10条

1 韦波;;粒子群优化的RBF神经网络在海上运输事故预测中的应用[J];舰船科学技术;2016年04期

2 曹亮;刘正江;;基于帕累托最优的海上个人可接受风险标准研究[J];工业安全与环保;2015年12期

3 王林;郭健;刘静;李思洋;;基于ARIMA-SVM组合模型的光功率趋势预测新方法[J];电力信息与通信技术;2015年12期

4 ;水上交通事故统计办法[J];中华人民共和国国务院公报;2015年01期

5 王磊;耿宝;王娟;刘冰;魏颖;;场地风险评价暴露途径与风险可接受研究[J];油气田环境保护;2014年05期

6 石子泊;邹志红;;基于小波变换的ARIMA模型在水质预测中的应用研究[J];环境工程学报;2014年10期

7 黄常海;高德毅;胡甚平;耿鹤军;彭宇;;基于Apriori算法的船舶交通事故关联规则分析[J];上海海事大学学报;2014年03期

8 杨燕鹏;罗云;曾珠;宋继红;高继轩;;压力管道社会风险可接受准则研究[J];中国安全科学学报;2014年09期

9 彭雪辉;盛金保;李雷;刘来红;周克发;郑昊尧;;我国水库大坝风险标准制定研究[J];水利水运工程学报;2014年04期

10 李红喜;张连丰;郑中义;;基于数据挖掘的船舶人为碰撞事故致因链研究[J];大连海事大学学报;2014年02期



本文编号:1566374

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1566374.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户56cc0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com