带后导叶动叶可调轴流风机的优化设计
本文选题:动叶可调轴流风机 切入点:优化设计 出处:《北京建筑大学》2013年硕士论文 论文类型:学位论文
【摘要】:在日常生活及工业生产中,通风机的应用非常广泛,但耗电量也是非常之大的,仅工业用通风机的耗电量就占全国总用电量的12%。我国风机制造水平和发达国家还有差距,风机效率还有提高的空间。同时,通风机又是生产和日常生活中一个重要的噪声源。在提倡节能环保的大环境下,通风机节能、降噪的研究已引起高度重视。许多学者也在节能、降噪方面做了大量研究。本文在前人对轴流风机研究的基础上,分析了轴流通风机的优化设计现状及设计中存在的问题,提出了带后导叶的动叶可调轴流风机的优化设计方法。文中采用了双工况实例动叶可调轴流风机为原始数据,并采取一些手段验证优化结果的可行性。 主要研究内容及结果如下: 1、建立了带后导流器的动叶可调轴流通风机的优化数学模型,即叶片安装角度改变时(双工况条件下)效率和噪声综合目标函数;选取叶轮直径、轮毂比、叶片数、升力系数、转速5个参数作为设计变量,其中包括了离散型和连续型两类设计变量;选用叶片安装角度、轮毂处动力负荷系数、叶栅稠度、许用安全系数作为优化的状态变量。在优化过程中考虑了叶片载荷对风机的影响,在最优结果中可以得到适合两个工况的最佳叶片安装角度。 2、采用ANSYS-APDL语言编写优化程序,对建立的风机优化数学模型进行优化迭代。得到优化后的风机结构参数,同时确定了动叶可调轴流风机运行时的最佳叶片安装角度。经过优化后风机的效率得到了提高,并降低了它的运行噪声。 3、利用优化后动叶可调轴流风机的结构参数,在Pro/E中建立风机叶轮及后导叶三维模型。 4、在Workbench的Static Structural(ANAYS)模块对风机叶片进行了静力分析,得到叶片的位移、应力、应变云图,,最大值均在材料许可范围内,符合风机的安全运行要求。 5、在Workbench的Modal(ANAYS)模块对风机叶轮进行模态分析,结果表明,实例风机各阶固有频率和激振频率以及其倍数值之间的偏差均在15%(即0.15)以上,激振频率和风机固有频率之间的偏差符合要求,风机运行时不会发生共振,能安全运行。 6、采用Workbench中的Fluent流体分析模块对优化后风机进行流场分析,结果表明,风机内部流场顺畅。
[Abstract]:In daily life and industrial production, the application of fan is very extensive, but the power consumption is very large, only the industrial power consumption of fan accounts for the country's total electricity consumption 12%. Chinese wind turbine manufacturing level and developed countries as well as the gap between the fan efficiency and improve space. At the same time, ventilation the machine is an important noise source in production and daily life. In the promotion of energy conservation and environmental protection of the environment, energy saving ventilator, noise reduction research has aroused great attention. Many scholars have done a lot of research on the energy saving and noise reduction. Based on the previous research on axial flow fan, analysis there are optimum design status and design of axial fan in problem, put forward with the guide moving blade adjustable axial fan optimization design method of the double case moving blade adjustable axial fan for the raw data, and take some measures Verify the feasibility of the optimization results.
The main contents and results are as follows:
1, set up after the belt deflector blades can be optimized mathematical model of flow fan shaft is adjustable, blade installation angle changes (double conditions) efficiency and noise comprehensive objective function; selection of impeller diameter, hub ratio, leaf number, lift coefficient, speed 5 parameters as design variables, including the two class of discrete and continuous design variables; the blade installation angle, hub power load coefficient, cascade solidity, the allowable safety coefficient as the state variables in the optimization process optimization. Considering the influence of blade load on the wind turbine blades, can get the best for two working conditions in the optimal installation angle the results.
2, the use of ANSYS-APDL language optimization program, to establish the mathematical model of wind turbine wind machine structure optimization iteration. The optimized parameters, and determine the optimum blade moving blade adjustable axial flow fan running the installation angle. After optimization of the fan efficiency is improved, and reduces the operation the noise of it.
3, the three-dimensional model of the fan impeller and the rear guide blade is established in Pro/E by optimizing the structural parameters of the adjustable axial fan.
4, in Workbench's Static Structural (ANAYS) module, the static analysis of fan blades is carried out, and the displacement, stress and strain nephogram of the blades are obtained. The maximum values are within the permitted scope of materials, which is consistent with the safe operation requirements of fans.
In 5, Workbench Modal (ANAYS) module for modal analysis of the fan impeller. The results show that the deviation between the instance fan of the natural frequencies and vibration frequency and its numerical times were 15% (0.15) above, the deviation between the excitation frequency and the natural frequency of the fan to meet the requirements, fan the operation does not occur when the resonance, can run safely.
6, the flow field of the optimized fan is analyzed by the Fluent fluid analysis module in Workbench. The results show that the flow field in the fan is smooth.
【学位授予单位】:北京建筑大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU834.41
【参考文献】
相关期刊论文 前10条
1 李伟国;王建华;;轴流通风机的优化设计[J];北京机械工业学院学报;2005年04期
2 徐自力;潘永岳;肖长江;肖晖;;振动下传对T型叶根三联叶片模态阶序的影响[J];动力工程;2006年02期
3 钮冬至,樊启泰;用ANSYS软件研究轴流通风机叶轮的振动特性[J];风机技术;2001年05期
4 田彬,席德科,徐燕飞,孙刚;轴流通风机内部流场数值研究[J];风机技术;2004年05期
5 伍先俊,朱石坚;轴流通风机叶片模态仿真及其对气动噪声的影响[J];风机技术;2004年05期
6 陈魏巍;李景银;黄靓;翟瑞虎;;减少动叶数目对动叶可调轴流通风机性能的影响[J];风机技术;2008年01期
7 陈公卫;热电厂锅炉风机调速运行方案探讨[J];节能技术;1998年04期
8 孙志高;变频调速在空调系统节能中的应用研究[J];节能技术;2000年01期
9 陈益武,陈宏振;变频调速技术在地下通风空调系统中的应用[J];建筑热能通风空调;2004年02期
10 吴秉礼;轴流通风机气动噪声预测与治理[J];流体机械;1998年04期
相关硕士学位论文 前3条
1 黄超;大型动叶可调轴流风机数值模拟与实际工况比较研究[D];华北电力大学(北京);2011年
2 李晟;基于FLUENT软件的轴流风机设计初步研究[D];西北工业大学;2004年
3 杨立国;北京地铁轴流风机内流场及叶片气动弹性的数值模拟研究[D];北京交通大学;2007年
本文编号:1601683
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1601683.html