当前位置:主页 > 科技论文 > 安全工程论文 >

煤巷干式钻孔产尘机理与控尘技术研究

发布时间:2018-03-28 06:36

  本文选题:干式钻孔 切入点:产尘机理 出处:《湖南科技大学》2017年硕士论文


【摘要】:2016年我国能源结构虽已经调整,新能源占比不断增大,但其新能源的普及应用仍需时日。同时,我国能源特点是煤资源多,这就决定了煤炭在我国消费能源中占主体。综上,煤炭在未来几年内仍是重要的消费能源。随着煤炭开采深度的加深,煤与瓦斯突出现象越来越常见。预防突出现象的常用且十分有效的措施是在煤层中实施瓦斯抽采。但瓦斯抽采的前期工作是需要在煤层或穿过煤层施工大量钻孔,钻孔施工有湿式和干式作业两种形式,干式钻孔作业相对于湿式钻孔技术具有成孔率高、用水量少、不会湿润和软化煤体等优点,故在煤巷钻孔施工中被广泛采用。但煤巷干式钻孔施工的致命弱点是产生大量粉(煤)尘,因此,开展煤巷干式钻孔施工粉(煤)尘的收集与除尘控制技术研究是煤矿当前急需解决的技术问题之一。首先通过理论分析,阐述了干式钻孔施工过程中钻进机理、产尘影响因素以及孔口粉尘的受力情况,明确钻进产生的粉尘特性与运动特点,提出干式钻孔的集尘措施;其次,通过BP神经网络模型建立了干式钻孔孔口粉尘率预测模型,结合淮北祁南煤矿、淮北袁店一井等进行模型的学习训练和验证,结果表明建立的预测模型与实际情况相吻合;最后,通过分析煤层钻孔方式以及现场调研干式钻孔集尘除尘设备,初步设计制造出了煤巷干式钻孔施工防突、集尘、排渣一体化装置。通过对煤巷干式钻孔产尘机理与控尘技术的相关研究,可以得到如下结论:(1)煤巷干式钻孔施工中粉尘主要来源于钻头钻进过程中不断对煤体的破碎。(2)通过对煤巷干式钻孔钻进机理分析,可以得到煤巷干式钻孔过程中产尘的影响因素,包括施工人员的认知水平和操作技术水准、煤体的硬度(坚硬度系数)、综合性指标、含水率以及可表征钻机的工作状态参数特点的固气比。(3)通过分布函数Rosin-Rammler可知均匀性指数为1.0599,表明了祁南煤矿煤巷干式钻孔施工过程中产生粉尘的分散度较大,细小粒径的粉尘占比越多,其危害性越大且不易被捕获。粉尘的分散度可从整体上说明产生粉尘粒径的分布特性。粉尘的比表面积和粒度不仅衡量了粉尘的细小特性,而且可以表明粉尘的物理化学活性特点,同时比表面积和粒度成反比,比表面积越大,粒径越小,粉尘活性越大;粉尘密度大小是选取除尘设备类型的依据之一。(4)建立的煤巷干式钻孔孔口产尘率BP神经网络预测模型可以说明孔口产尘率与煤体硬度、含水率、综合粉碎性指标和固气比之间具有非线性关系。(5)研究煤巷干式钻孔孔口粉尘在巷道中的扩散运动,并且建立了孔口粉尘在巷道中扩散模型及巷道中任意一处的扩散浓度方程。该扩散浓度方程是三维空间巷道中三个方向上三个相互独立且服从正态分布随机变量的联合分布函数。(6)根据风幕原理进行孔口密封性的设计,同时在钻杆钻口上设计防突板,最后将破碎的粉尘收集到可抽动的收集箱内,而依据喷雾除尘原理在集尘箱进行多次降尘,相应地设计制造了一个新型干式钻孔集尘除尘装置。
[Abstract]:2016 China's energy structure has been adjusted, new energy accounted for the increase, but the popularization and application of new energy still takes time. At the same time, the characteristics of China's energy resources are coal, which determines the coal dominant energy consumption in our country. Therefore, coal is still in the next few years an important consumer energy. With coal mining depth, coal and gas outburst phenomenon is more and more common. The common phenomenon of outburst prevention and effective measures is the implementation of gas in coal seam gas drainage. But the prophase work of mining is the need to pass through the construction of large amount of coal seam in coal seam or a wet and dry operation in two forms drilling construction, dry drilling technology is relative to the wet drilling hole rate is high, with less water, not wet and soften coal and other advantages, it is widely used in Coal Roadway Drilling Construction. But the construction of coal roadway caused by dry drilling Life is a weakness resulting in a large number of powder dust (coal), therefore, to carry out Coal Roadway Drilling dry powder (coal) dust collection and dust control technology is one of the technical problems of coal mine urgent. Firstly, through theoretical analysis, elaborated the drilling mechanism of dry drilling process, dust production factors and orifice dust the stress characteristics and movement characteristics of dust, clear drilling production, put forward measures of dust collecting dry drilling; secondly, the BP neural network model of dry hole drilling dust rate prediction model is established, combined with Huaibei Qinan Coal Mine, the training and validation of model wells Huaibei Yuan Dian Yi, the result shows that the model the building is consistent with the actual situation; finally, through the analysis of coal seam drilling mode and field study of dry drilling dust removal equipment, preliminary design and manufacture the outburst of drill hole construction of coal roadway for dry dust, Deslagging device. Through the research on the integration and control of coal roadway dust production mechanism of dust dry drilling technology, we can get the following conclusions: (1) dust dry drilling in coal roadway mainly from drilling to continuously broken coal process. (2) based on the dry coal roadway drilling hole drilling mechanism analysis. You can get the impact factor of coal roadway drilling process middle dry dust, including construction of the cognitive level and operation level, coal hardness (hardness coefficient), comprehensive index, water content and the characteristics of working state parameters can characterize the rig the solid gas ratio. (3) through the uniform distribution function Rosin-Rammler index is 1.0599, that of large scattered dust produced in Qinan Coal Mine Roadway dry drilling process, fine particle size of the dust accounted for more, the greater the danger and not easy to be captured. The dispersion of the dust from the whole The distribution of the characteristics of dust particle size of dust. The specific surface area and small size not only to measure the characteristics of dust, but also can show that the physical and chemical characteristics of dust activity, while the specific surface area and particle size is inversely proportional to the specific surface area is larger, the smaller the particle size, the greater the activity of dust; dust density is one of the selected types of dust removal equipment basis. (4) the establishment of coal roadway dry hole drilling production prediction model can explain the orifice dust rate and the hardness of coal dust, water content rate of BP neural network, comprehensive index of comminuted and solid gas ratio between the non linear relationship. (5) the diffusion motion of dry coal roadway the dust hole drilling in tunnel, diffusion concentration equation and the establishment of the orifice dust diffusion model and an arbitrary tunnel in the tunnel. The diffusion concentration equation of three-dimensional space in roadway three in three directions of independent and obey The joint distribution function of the normal distribution of random variables. (6) of the design according to the principle of air curtain seal orifices, and design the outburst in drill hole, the broken dust collection to the collection box and tic, based on the principle of spray dust in the dust collecting box of secondary dust, corresponding design and manufacture of a new type of dry drilling dust removal device.

【学位授予单位】:湖南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD714.4

【参考文献】

相关期刊论文 前10条

1 张超;;基于BP神经网络在煤矿瓦斯预警系统中的应用[J];黑龙江科技信息;2016年01期

2 谭大国;;BP神经网络在矿井涌水量预测中的应用[J];制造业自动化;2015年05期

3 庄育锋;胡晓瑾;翟宇;;基于BP神经网络的微量药品动态称重系统非线性补偿[J];仪器仪表学报;2014年08期

4 高玉明;张仁津;;基于遗传算法和BP神经网络的房价预测分析[J];计算机工程;2014年04期

5 尹光志;李铭辉;李文璞;曹偈;李星;;基于改进BP神经网络的煤体瓦斯渗透率预测模型[J];煤炭学报;2013年07期

6 殷文韬;傅贵;袁沙沙;董继业;;2001—2012年我国重特大瓦斯爆炸事故特征及发生规律研究[J];中国安全科学学报;2013年02期

7 蒋仲安;陈举师;牛伟;王晶晶;陈梅岭;;皮带运输巷道粉尘质量浓度分布规律的数值模拟[J];北京科技大学学报;2012年09期

8 蒋仲安;陈举师;王晶晶;牛伟;高杨;;胶带输送巷道粉尘运动规律的数值模拟[J];煤炭学报;2012年04期

9 高晓旭;董丁稳;杨日丽;;BP神经网络在煤矿本质安全评价模型中的应用[J];西安科技大学学报;2011年06期

10 许兴军;颜钢锋;;基于BP神经网络的股价趋势分析[J];浙江金融;2011年11期

相关博士学位论文 前3条

1 王吉权;BP神经网络的理论及其在农业机械化中的应用研究[D];沈阳农业大学;2011年

2 李雨成;基于风幕技术的综掘面粉尘防治研究[D];辽宁工程技术大学;2010年

3 王海宁;矿用空气幕理论及其应用研究[D];中南大学;2005年

相关硕士学位论文 前4条

1 任浩源;BP神经网络在煤与瓦斯突出危险性预测中的应用研究[D];西安科技大学;2012年

2 丁旭东;干式钻进煤尘在巷道中运移及分布规律的研究[D];安徽理工大学;2012年

3 吴代安;煤层干式打钻孔口除尘装置研究与设计[D];安徽理工大学;2010年

4 牛全振;矿用风水雾化降尘装置设计及其流场仿真研究[D];太原理工大学;2008年



本文编号:1675165

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1675165.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户58751***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com