当前位置:主页 > 科技论文 > 安全工程论文 >

CFD模型下采空区瓦斯抽采与防火研究

发布时间:2018-04-20 01:29

  本文选题:地面钻井 + 瓦斯抽采 ; 参考:《中国矿业大学》2017年硕士论文


【摘要】:作为高瓦斯复杂煤层群开采的典型,淮南矿区在煤与瓦斯共采领域取得了很大成功。本文以地面井产气成功率较高的丁集矿为研究矿区,对保护层开采下采空区卸压瓦斯分布规律、钻井抽采下采空区瓦斯运移规律、抽采下采空区三带分布变化和地面钻井优化布置进行了系统研究,以瓦斯涌出量大小为依据,提出了针对含瓦斯易自燃煤层采空区注氮、合理抽采等综合防治技术。结合采空区高位环形裂隙体理论,确定了地面井布置的最佳位置,考察分析了丁集矿保护层工作面开采下钻井产气量随采动的变化关系,对卸压瓦斯流态特征、地面钻井防破坏措施、施工要点与产气变化规律等问题进行了总结。以计算流体力学模拟软件FLUENT为研究工具,编制自定义函数设置采空区渗透率分布、瓦斯涌出量大小等参数,模拟得出了地面井抽采下采空区瓦斯运移分布规律及抽采对采空区三带分布的影响:(1)钻井抽采会在采空区形成低压区,增大氧气从周围裂隙向采空区的侵入范围,采空区气体流场分布与钻井布置位置相关。浅部地面井抽采能更有效地降低回风巷瓦斯浓度,高浓度瓦斯可在深部形成惰化区。深部地面井可抽采上被保护层卸压释放的高浓度瓦斯,但更容易将氧气向采空区深部转移,尤其大流量抽采时使深部氧气含量急剧增大。(2)井上下立体抽采易使得采空区内部漏风通道间相互贯通,采空区注氮可很好地惰化采场进风侧与深部区域,在相同注氮流量下,采空区深部注氮比浅部注氮可更有效地惰化整个采场,但回风侧由于漏风强烈使得氮气流失,存在氧化高温区。(3)联合钻井抽采可在采空区内形成较为均匀分布的低压区,对大走向采空区能合理地分配抽采能力,在保证抽采浓度的同时,不会导致采空区富氧带范围急剧扩大,能最大化抽取采空区卸压瓦斯。(4)矿井瓦斯涌出量小于40m3/min时,采用井下瓦斯抽采即可很好的治理瓦斯超限问题,瓦斯涌出量大于40m3/min是,需综合采取矿井上下立体抽采措施,才可有效控制瓦斯超限问题。淮南丁集矿区保护层卸压瓦斯井上下立体抽采工程实践表明,瓦斯抽采流量随工作面推进引起的采动裂隙演化而发生变化,地面钻井的抗破坏能力对于瓦斯高效、长期抽采有很大影响。在钻井成功的情况下,高效抽采可以持续6个月以上的时间,工作面收作以后,仍可抽采卸压与采空区积聚瓦斯,有效抽采周期最长达3年以上。丁集矿考察期间地面钻井抽采的月平均抽采纯流量6.32~14.27m3/min,累积总抽采纯量16635631m3,占总抽采量的27.52%。工作面高抽巷和顶板钻孔的月平均抽采纯流量2.87~20.63m3/min,累积总抽采纯量30326880 m3,占总抽采量的50.16%。地面钻井、井下高抽巷和走向钻孔抽采瓦斯浓度较高、时间较长,不影响井下煤炭生产,可有效治理高瓦斯煤层的瓦斯灾害问题。论文的研究高瓦斯矿井瓦斯治理与瓦斯抽采过程下自燃防治有一定的参考和借鉴意义。
[Abstract]:As the typical mining of high gas and complex coal seam group, the Huainan mining area has made great success in the field of coal and gas CO production. This paper takes the Buji mine with high success rate of the ground gas production as the research area, the distribution law of pressure relief gas distribution in the goaf under the protection layer, the law of gas migration in the goaf under drilling, and the three band in the mined out area under extraction. On the basis of the size of gas emission, the comprehensive prevention and control technology for nitrogen injection and reasonable extraction in goaf containing gas and easy spontaneous combustion coal seam is put forward on the basis of the size of gas emission. The gas flow rate under the working face is dependent on the change of production, the characteristics of pressure relief gas flow pattern, ground drilling anti failure measures, construction key points and gas production change law are summarized. The calculation of fluid mechanics simulation software FLUENT is used as the research tool to set up the permeability distribution in the goaf area and the gas emission is large. The distribution law of gas migration in the mined out area under ground well extraction and the influence of extraction on the three belt distribution in the goaf are simulated. (1) the drilling extraction will form a low pressure area in the goaf, increase the invasion range of oxygen from the surrounding fissure to the goaf, and the distribution of gas flow field in the goaf is related to the location of the drilling layout. The gas concentration in the return air lane can be reduced more effectively. The high concentration gas can form the inert area in the deep part. The deep ground well can extract the high concentration gas released by the protected layer, but it is easier to transfer the oxygen to the depth of the goaf, especially in the large flow extraction, which makes the deep oxygen content increase sharply. (2) the well and lower solid extraction is easy to make goaf. The inner air leakage channel interconnects each other, and the nitrogen injection in the goaf can inert the inlet and deep regions well. Under the same nitrogen injection flow, the deep injection of nitrogen in the goaf is more effective to inert the whole stope more effectively than the shallow nitrogen injection, but the air leakage is strongly caused by the leakage of air, and there is a high oxidation temperature zone. (3) joint drilling extraction can be used in mining. The relatively uniform distribution of the low pressure area in the empty area can reasonably distribute the pumping capacity in the large goaf. While the extraction concentration is guaranteed, the range of the oxygen rich zone in the goaf will not be greatly expanded. (4) when the gas emission of the mine is less than 40m3/min, it is good to adopt the underground gas extraction. In order to control the problem of gas exceeding the limit, the gas emission is more than 40m3/min, so it is necessary to take the comprehensive extraction measures on the upper and lower sides of the mine to effectively control the problem of gas overlimit. The practice of the upper and lower solid extraction engineering of the pressure relief gas well in the protective layer of the Huainan Ding Ji mining area shows that the gas extraction flow changes with the evolution of the mining fracture caused by the advance of the working face. The anti destructive ability of ground drilling has a great influence on gas efficiency and long-term extraction. In the case of successful drilling, high efficiency extraction can last more than 6 months. After the work face is collected, the gas discharge pressure and the accumulation of gas in the goaf can still be accumulated for more than 3 years. The average monthly pumping rate is 6.32~14.27m3/min, and the total extraction purity is 16635631m3. The monthly average extraction pure flow rate is 2.87~20.63m3/min for the high pumping and roof drilling in the 27.52%. working face of the total extraction. The cumulative total extraction purity is 30326880 m3, which accounts for the 50.16%. ground drilling of the total extraction, and the gas concentration in the underground high pumping and drilling holes is more than that of the drilling. It has a long time and does not affect the production of coal mine. It can effectively control the gas disaster of high gas coal seam. This paper has a certain reference and reference significance for the study of gas control in high gas mine and the prevention and control of spontaneous combustion under the process of gas extraction.

【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.6;TD75

【参考文献】

相关期刊论文 前10条

1 梁运涛;侯贤军;罗海珠;田富超;于贵生;;我国煤矿火灾防治现状及发展对策[J];煤炭科学技术;2016年06期

2 周延;孟倩;李骏;林柏泉;徐聪;;采空区自燃带数值模拟方法研究[J];中国矿业大学学报;2014年06期

3 刘建胜;王晓蕾;;2001—2013年我国煤矿瓦斯爆炸事故基本特征与发生规律探讨[J];中州煤炭;2014年09期

4 王凤双;杨胜强;李珍宝;金双林;孙家伟;;不同粒径煤样低温氧化过程升温速率规律研究[J];煤炭科学技术;2014年05期

5 梅福树;戴广龙;秦汝祥;周言安;陈梅勇;;潘一东矿Y型回采工作面采空区漏风检测[J];矿业安全与环保;2014年02期

6 王锋;原德胜;郭魏虎;何建华;史忠社;;高瓦斯易燃综放面回撤期瓦斯治理和防灭火技术[J];煤炭科学技术;2014年03期

7 袁亮;薛俊华;张农;卢平;;煤层气抽采和煤与瓦斯共采关键技术现状与展望[J];煤炭科学技术;2013年09期

8 朱红青;王海燕;沈静;常明然;;氧浓度对松散煤耗氧速率影响的实验研究[J];煤炭工程;2013年08期

9 Pan Rongkun;Cheng Yuanping;Yu Minggao;Lu Chang;Yang Ke;;New technological partition for “three zones” spontaneous coal combustion in goaf[J];International Journal of Mining Science and Technology;2013年04期

10 秦波涛;鲁义;殷少举;曹凯;王美光;;近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J];采矿与安全工程学报;2013年02期

相关博士学位论文 前10条

1 余陶;采空区瓦斯与煤自燃复合灾害防治机理与技术研究[D];中国科学技术大学;2014年

2 高洋;煤矿开采引起的采空区瓦斯与煤自燃共生灾害研究[D];中国矿业大学(北京);2014年

3 曹凯;综放采空区遗煤自然发火规律及高效防治技术[D];中国矿业大学;2013年

4 宋万新;含瓦斯风流对煤自燃氧化特性影响的理论及应用研究[D];中国矿业大学;2012年

5 陈晓坤;煤自燃多源信息融合预警研究[D];西安科技大学;2012年

6 吴仁伦;煤层群开采瓦斯卸压抽采“三带”范围的理论研究[D];中国矿业大学;2011年

7 邵昊;高瓦斯易自燃采空区双层遗煤均压通风系统研究[D];中国矿业大学;2011年

8 罗文柯;上覆巨厚火成岩下煤与瓦斯突出灾害危险性评估与防治对策研究[D];中南大学;2010年

9 翟成;近距离煤层群采动裂隙场与瓦斯流动场耦合规律及防治技术研究[D];中国矿业大学;2008年

10 李宗翔;高瓦斯易自燃采空区瓦斯与自燃耦合研究[D];辽宁工程技术大学;2007年

相关硕士学位论文 前6条

1 路洁心;远距离下保护层采动卸压及地面井失稳变形研究[D];中国矿业大学;2015年

2 王少锋;地下煤火空间特性及治理过程管理方法研究[D];中国矿业大学;2014年

3 张东坡;易自燃特厚煤层综放面采空区注氮防灭火技术研究与应用[D];太原理工大学;2010年

4 黄波;鹤壁六矿深部(未采区)瓦斯涌出量及突出危险性预测研究[D];河南理工大学;2009年

5 李守国;采空区瓦斯分布及运移规律研究[D];煤炭科学研究总院;2009年

6 毛占利;高瓦斯煤层自燃火灾防治技术研究[D];西安科技大学;2006年



本文编号:1775648

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1775648.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户93b9b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com