当前位置:主页 > 科技论文 > 安全工程论文 >

高压氮气冲击致裂煤岩体裂隙发育规律研究

发布时间:2018-05-09 10:38

  本文选题:高压氮气 + 气射流 ; 参考:《中国矿业大学》2017年硕士论文


【摘要】:氮气作为惰性气体,在煤中不容易被吸附存储;当高压氮气在煤层中发生冲击致裂后,不会留存大量的膨胀能,不具有突出危险性。随着我国开采深度的增加,矿井的瓦斯含量随之上升而渗透率同时下降,通过在煤层中实施高压氮气致裂可以提高瓦斯抽采率、降低瓦斯含量。因此,高压氮气冲击致裂的研究对于矿井的安全生产具有重要意义。本文以对高压氮气气射流冲击过程以及高压氮气的准静态膨胀作用的研究为基础,分析了致裂过程中能量的变化,并以之作为理论指导开展高压氮气冲击致裂实验与数值模拟研究,获得了不同工况下高压氮气冲击致裂的相关规律。实验系统以高压氮气冲击致裂装置为核心,主要由高压氮气冲击致裂系统和实时监控系统两部分组成实验系统。其中高压氮气致裂系统包括高压氮气压力源、高压氮气冲击致裂实验装置、气动高压切断球阀、试块以及连接装置等部分。实验中采用毫秒级压力传送器以及声发射监测系统,对致裂过程中压力的升降和试块内部的能量等物理量的变化进行监测。通过强度测定等实验确定了不同强度相似材料的配比并确定28天的养护周期;同时通过应力加载的方式来模拟煤层在实际情况中应力场的情况。实验中采用1L的容器作为气体的初始体积,分别先对三种强度的试块进行初始压力为5MPa、7.5MPa以及10MPa三种工况条件下的冲击致裂实验;再改变三种强度试块的应力环境进行初始压力为5MPa的实验。从结果分析得出随着气体初始压力的升高,裂纹从最初只有一条纵向裂纹到随后以释放孔为中心呈星状发散的裂纹,从垂直于最小主应力方向到均匀分布。同时裂纹的分布于试块周边的应力差也有一定关系,应力差小则裂纹均匀分布,应力差大则垂直于最小主应力方向。再此基础上对于最小致裂压力进行了初步研究,结果圈定在2MPa-3MPa之间。根据对压力监测结果的分析,整个高压氮气致裂过程根据压力上升的快慢可以分为气体射流冲击阶段、起裂致裂阶段和动态止裂阶段。从声发射监测结果中得出,随着气体压力的上升,试块致裂时内部绝对能量也呈现上升趋势,尤其是在7.5MPa升至10MPa时能量上升明显。以理论研究为基础结合现场实际,通过ANSYS/LS-DYNA模拟软件建立模型进行精算并通过LS_PREPOST后处理,对5MPa、7.5MPa和10MPa三种工况下的高压氮气冲击致裂进行模拟。从模拟的运行过程中可以看出,裂隙的发育情况随着气体初始压力的升高而得到明显的提升,同时裂隙呈现出先沿轴向再沿径向扩展的变化规律,这一规律在应力云图中也得到了验证。通过对应力波传递结果的分析得出,致裂过程中的应力波呈现震动上升,当应力值大于煤层失效应力时,致裂发生;小于时则保持高应力状态直至发生致裂。
[Abstract]:Nitrogen, as an inert gas, is not easily adsorbed and stored in coal. With the increase of mining depth in China, the gas content in coal mine increases and the permeability decreases simultaneously. The gas extraction rate can be increased and the gas content can be reduced by the application of high pressure nitrogen in coal seam. Therefore, the research of high pressure nitrogen impact cracking is of great significance to mine safety production. Based on the study of the impinging process of high pressure nitrogen jet and the quasi-static expansion of high pressure nitrogen, the energy changes during the process of cracking are analyzed. The experiment and numerical simulation of high pressure nitrogen impact cracking were carried out under the guidance of the theory, and the related laws of high pressure nitrogen impact cracking under different working conditions were obtained. The experimental system is composed of two parts: high pressure nitrogen impact cracking system and real time monitoring system. The high pressure nitrogen fracturing system includes high pressure nitrogen pressure source, high pressure nitrogen impact cracking experimental device, pneumatic high pressure cut off ball valve, test block and connecting device and so on. In the experiment, millisecond pressure transmitter and acoustic emission monitoring system are used to monitor the change of physical quantities such as pressure rise and fall and energy inside the specimen during the process of cracking. The proportioning of similar materials with different strength and the curing period of 28 days were determined by strength measurement, and the stress field of coal seam was simulated by the way of stress loading. In the experiment, 1L vessel was used as the initial volume of gas, and the initial pressure of three kinds of strength samples was tested under the initial pressure of 5 MPA and 7.5 MPA, respectively, and the impact cracking test was carried out under three conditions of 10MPa. Then the stress environment of the three strength specimens was changed and the initial pressure was 5MPa. The results show that with the increase of the initial gas pressure, the crack changes from one longitudinal crack to a star-shaped crack centered on the release hole, from the direction perpendicular to the minimum principal stress to the uniform distribution. At the same time, the distribution of the crack is also related to the stress difference around the specimen. The crack distributes evenly when the stress difference is small, and the stress difference is perpendicular to the direction of the minimum principal stress. On this basis, a preliminary study of the minimum cracking pressure is carried out, and the results are delineated between 2MPa-3MPa. According to the analysis of pressure monitoring results, the whole process of high pressure nitrogen cracking can be divided into three stages: gas jet impingement stage, crack initiation stage and dynamic crack arrest stage according to the speed of pressure rise. From the results of acoustic emission monitoring, it can be concluded that with the increase of gas pressure, the internal absolute energy of the specimen also shows an upward trend, especially when 7.5MPa rises to 10MPa. On the basis of theoretical research and field practice, the model was established by ANSYS/LS-DYNA simulation software and LS_PREPOST post-treatment was used to simulate the impact cracking of high pressure nitrogen under three conditions: 5MPA 7.5MPa and 10MPa. It can be seen from the operation of the simulation that the development of fractures increases obviously with the increase of the initial gas pressure, and the fracture shows a variation law of first axial direction and then radial expansion. This rule is also verified in the stress cloud diagram. Through the analysis of the results of stress wave transmission, it is concluded that the stress wave in the process of crack appears vibration rising, when the stress value is greater than the failure stress of coal seam, the crack occurs, and when the stress value is larger than the failure stress of coal seam, the stress wave will remain in a high stress state until the crack occurs.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.6

【参考文献】

相关期刊论文 前10条

1 谢子令;李显;;养护温度及时间对粉煤灰基地质聚合物混凝土强度发展的影响[J];混凝土;2014年06期

2 赵立朋;;煤层液态CO_2深孔爆破增透技术[J];煤矿安全;2013年12期

3 袁亮;薛俊华;张农;卢平;;煤层气抽采和煤与瓦斯共采关键技术现状与展望[J];煤炭科学技术;2013年09期

4 张连军;林柏泉;高亚明;;高压水力割缝技术在快速掘进中的应用[J];能源技术与管理;2013年04期

5 覃道雄;朱红青;张民波;申健;杨成轶;;煤层水力压裂增透技术研究与应用[J];煤炭科学技术;2013年05期

6 袁亮;薛俊华;;低透气性煤层群无煤柱煤与瓦斯共采关键技术[J];煤炭科学技术;2013年01期

7 涂敏;袁亮;缪协兴;刘泽功;徐乃忠;付宝杰;;保护层卸压开采煤层变形与增透效应研究[J];煤炭科学技术;2013年01期

8 杨宏伟;;低透气性煤层井下分段点式水力压裂增透[J];北京科技大学学报;2012年11期

9 张建国;林柏泉;翟成;;穿层钻孔高压旋转水射流割缝增透防突技术研究与应用[J];采矿与安全工程学报;2012年03期

10 翟成;李贤忠;李全贵;;煤层脉动水力压裂卸压增透技术研究与应用[J];煤炭学报;2011年12期

相关博士学位论文 前7条

1 田坤云;高压水载荷下煤体变形特性及瓦斯渗流规律研究[D];中国矿业大学(北京);2014年

2 付江伟;井下水力压裂煤层应力场与瓦斯流场模拟研究[D];中国矿业大学;2013年

3 杨宏民;井下注气驱替煤层甲烷机理及规律研究[D];河南理工大学;2010年

4 王志亮;煤层深孔预裂爆破裂隙扩展机理与应用研究[D];中国矿业大学(北京);2010年

5 李清;爆炸致裂的岩石动态力学行为与断裂控制试验研究[D];中国矿业大学(北京);2009年

6 黄炳香;煤岩体水力致裂弱化的理论与应用研究[D];中国矿业大学;2009年

7 王亮;巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D];中国矿业大学;2009年

相关硕士学位论文 前9条

1 常琳;地下车库射流风机排烟研究[D];北京工业大学;2015年

2 孙建中;基于不同爆破致裂方式的液态二氧化碳相变增透应用研究[D];中国矿业大学;2015年

3 谢姣;基于Ansys/ls-dyna数值模拟的爆破地震效应影响因素分析[D];长安大学;2014年

4 田俊斌;低渗透煤岩体水力压裂裂隙扩展演化及其增透机理研究[D];太原理工大学;2014年

5 孙丽;空气间隔轴向不耦合装药预裂爆破数值模拟研究[D];中南大学;2012年

6 王卫超;煤体中爆炸应力波及爆破作用的试验研究[D];河南理工大学;2010年

7 王以贤;煤体爆破破碎机理的模拟试验研究[D];河南理工大学;2009年

8 赵建博;风口上置置换通风机理及系统性能实验研究[D];西安建筑科技大学;2007年

9 张翔;三峡电站主厂房分层空调技术的应用研究[D];重庆大学;2001年



本文编号:1865703

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1865703.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fd890***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com