高压水力压裂和二氧化碳相变致裂联合增透技术
本文选题:高压水力压裂 + 二氧化碳相变致裂 ; 参考:《煤炭科学技术》2017年07期
【摘要】:针对白皎煤矿地质构造复杂、构造应力大、煤层透气性差、抽采瓦斯效果差的问题,提出了高压水力压裂和二氧化碳相变致裂联合增透技术,分析了水力压裂和二氧化碳相变致裂联合增透技术的原理;并在238底板巷对B4煤层进行了联合增透对比试验研究。试验结果表明:试验区域煤层透气性显著提高,单孔初抽瓦斯体积分数分别是高压水力压裂试验区域和普通抽采试验区域平均瓦斯体积分数的1.70、3.48倍;瓦斯抽采纯量较水力压裂区域和普通抽采区域分别提高了1.49、3.04倍;抽采65 d以后,高压水力压裂和二氧化碳相变致裂联合增透区域汇总瓦斯体积分数仍保持在40%以上,抽采效果良好,该技术可供类似矿井借鉴。
[Abstract]:Aiming at the problems of complex geological structure, large tectonic stress, poor permeability of coal seam and poor gas drainage effect in Baijiao Coal Mine, the combined anti-permeability technology of high-pressure hydraulic fracturing and carbon dioxide phase change fracturing is put forward. The principle of hydraulic fracturing and carbon dioxide phase change combined antireflection technique is analyzed, and a comparative study on the combined antireflection of B _ 4 coal seam is carried out in 238 floor roadway. The test results show that the permeability of coal seam in test area is improved significantly, and the initial gas volume fraction of single hole is 1.70 ~ 3.48 times that of the average gas volume fraction in high pressure hydraulic fracturing test area and common drainage test area respectively. Compared with hydraulic fracturing area and common extraction area, the scalar quantity of gas extraction increased by 1.49 ~ 3.04 times respectively, and after 65 days of extraction, the total gas volume fraction in the combined anti-permeability area caused by high-pressure hydraulic fracturing and carbon dioxide phase change still remained above 40%. The extraction effect is good and the technology can be used for reference in similar mines.
【作者单位】: 重庆工程职业技术学院;中煤科工集团重庆研究院有限公司;
【基金】:国家自然科学基金资助项目(51204217) 重庆市科学技术研究资助项目(KJ1732437)
【分类号】:TD712.6
【相似文献】
相关期刊论文 前10条
1 ;数值模拟水力压裂裂隙的扩展和增大[J];煤矿安全;2008年06期
2 连志龙;张劲;王秀喜;吴恒安;薛炳;;水力压裂扩展特性的数值模拟研究[J];岩土力学;2009年01期
3 李洋;;水力压裂开采页岩气对环境有害[J];国外油田工程;2010年09期
4 杨维;白治平;王春孝;;子长采油厂水力压裂与产量关系评价[J];硅谷;2010年19期
5 赵宝滔;牛晓东;孟凡册;;水力压裂施工方案研究[J];科技资讯;2012年15期
6 杨景宁;;美国国会简报关注水力压裂引发的环境和地震问题[J];国际地震动态;2013年04期
7 洪世铎;水力压裂理论[J];石油钻采工艺;1980年01期
8 刘蜀知,任书泉;水力压裂裂缝三维延伸数学模型的建立与求解[J];西南石油学院学报;1993年S1期
9 ;水力压裂法[J];环境与生活;2012年05期
10 乔继彤,张若京,姚飞,蒋阗;水力压裂的二维温度场分析[J];同济大学学报(自然科学版);2000年04期
相关会议论文 前10条
1 张若京;;地下能源开发的重要技术——水力压裂[A];力学与西部开发会议论文集[C];2001年
2 刘建军;杜广林;薛强;;水力压裂的连续损伤模型初探[A];第十二届全国疲劳与断裂学术会议论文集[C];2004年
3 李连崇;梁正召;李根;马天辉;;水力压裂裂缝穿层及扭转扩展的三维模拟分析[A];第十一次全国岩石力学与工程学术大会论文集[C];2010年
4 李传华;陈勉;金衍;;层状介质水力压裂模拟实验研究[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
5 刘闯;刘合;李向阳;吴恒安;;页岩气水平井水力压裂多缝间距优化研究[A];中国力学大会——2013论文摘要集[C];2013年
6 杨丽芳;张陈芳;阳国桂;王路伟;;油田水力压裂过程中示踪砂用量计算[A];第三届全国核技术与应用学术研讨会会议资料文集[C];2012年
7 李家祥;张文泉;;井下水力压裂应力测量[A];首届全国青年岩石力学学术研讨会论文集[C];1991年
8 朱礼军;陈勉;金衍;;松软地层水力压裂缝宽预测[A];新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集[C];2000年
9 阳国桂;李锦富;;同位素水力压裂示踪用示踪剂的研制[A];第三届全国核技术与应用学术研讨会会议资料文集[C];2012年
10 鄢旭彬;饶少莹;任海龙;王军红;;水力压裂工艺技术的应用[A];油气藏改造压裂酸化技术研讨会会刊[C];2014年
相关重要报纸文章 前10条
1 史蒂芬·科恩 编译 王林;对水力压裂法应该宽容一些[N];中国能源报;2012年
2 卢克·亨特 王林 编译;水力压裂法在东南亚难应用[N];中国能源报;2013年
3 苏珊·布兰特利 安娜·美耶_撤,
本文编号:1870975
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1870975.html