矿井灾变时期最优避灾救灾路径研究
发布时间:2018-06-02 00:39
本文选题:矿井灾变时期 + 最优路径 ; 参考:《太原理工大学》2013年硕士论文
【摘要】:由于我国的能源组织结构具有“富煤、缺油、少气”的特点,所以在未来相当长的一段时期内煤炭仍将作为一种主要能源在我国的国民经济中发挥着重要的作用。由于煤炭赋存条件的特殊性,决定了大部分的煤炭开采都属于井工开采。相比较于地面环境而言,井下环境更加复杂,更加恶劣,发生灾变时,情况更加混乱。因此为了避免各种人员伤亡和财产损失事故的发生,需要政府、煤矿管理层、矿工、社会舆论力量的共同配合协作来实现。但是由于某些天灾人祸,矿井事故有时候会不可避免的发生,在这种情况下,人员逃生和救援受伤人员就成为了矿山应急救援工作的重中之重。然而衡量应急救援工作成功与否的主要标志是能否在规定的时间内完成人员的逃生与救援,也就是能否在与时间的赛跑中获胜。这就需要人员在逃生和救援时,尽量沿着最短路径进行逃生,就可以节省很多宝贵的时间。这就是本文所选择课题的意义。在综合和参考国内外最优路径相关研究成果的基础之上,本文对最优路径的概念和求取办法以及相关程序设计都进行了基础性的探讨。 本文首先阐述了最优路径和K则最优路径的概念,明确了最优路径并不是传统意义上的几何距离最短,而是在参考了多个影响因素下的当量长度最短。然后介绍了求取最优路径的各种方法,主要详细介绍了经典Dijkstra算法的基本原理以及计算步骤,分析了经典Dijkstra算法的优缺点,针对其存在的搜索方向的盲目性和效率低的缺点,提出了扇形优化、直线优化和节点优化的各种改进算法。同时简要介绍了其他多种计算最优路径的算法,包括蚁群算法、Floyd算法等等。对于K则最优路径而言,目前没有特别完善的算法,但是常用的算法有去边算法,也就是先利用经典Dijkstra算法计算出任意两点之间的最优路径,然后依次删除最优路径中的任一边,重新计算比较得到K则最优路径,这种算法有一定的优势,只需要反复运用Dijkstra算法即可,但是这种算法求得的是近似最优路径。本文还重点介绍了求取K则最优路径的邻近点算法、稀疏矩阵算法、双向搜索算法等,并对各种算法都用小实例加以诠释,分析其利弊。相比较而言,双向搜索算法的思路更清晰,也最简单,就是两次Dijkstra算法而已。它的主要思路是:分别以灾变地点和安全地点为起始点,向外扩展,直到某一个节点被两边扩展的路径都永久标记,也就是成为了连接点,这时候从灾变地点到连接点的最优路径加上从连接点到安全地点的最优路径就是所求得的最优路径,然后继续两边搜索,就可以依次得到第二优路径、第三优路径等等。后来针对本文所涉及到的VB程序设计语言给予了简单的介绍。之后根据华盛矿的具体巷道参数和通风网络图,并用Dijkstra算法和K则最优路径的双向搜索算法为基础,分别设计了求取最优路径和K则最优路径以及多个安全出口的最优路径的运行界面,并通过实际节点验证了其正确性与可操作性。最后对本课题研究所存在的问题与不足以及对未来的展望做了简单的陈述。
[Abstract]:As the energy organization structure of our country has the characteristics of "rich coal, lack of oil and less gas", coal will play an important role in the national economy of our country for a long period of time. Because of the particularity of coal occurrence conditions, most of the coal mining is determined to be well mined. Compared to the ground environment, the downhole environment is more complex and worse, and the situation is more chaotic. Therefore, in order to avoid all kinds of casualties and property loss accidents, it is necessary for the government, coal mine management, miners, and social public opinion to cooperate together to achieve. But because of some natural disasters and accidents, mine accidents Sometimes it is inevitable that personnel escaping and rescuing injured people are the most important of the mine emergency rescue work. However, the main sign of the success of the emergency rescue work is whether to complete the escape and rescue of the personnel within the specified time, that is, whether or not it can be won in the race with the time. This is the significance of the topic selected in this paper. On the basis of comprehensive and reference to the research results of the optimal path at home and abroad, the concept and methods of optimal path and the related procedures are set up in this paper. A basic discussion was carried out in the plan.
In this paper, the concept of the optimal path and the optimal path of K is first expounded. It is clear that the optimal path is not the shortest geometric distance in the traditional sense, but the shortest equivalent length under the reference of several influencing factors. Then, various methods for obtaining the optimal path are introduced, and the basic principles of the classical Dijkstra algorithm are introduced in detail. The advantages and disadvantages of the classical Dijkstra algorithm are analyzed. In view of the shortcomings of the blind search direction and low efficiency, the fan shape optimization, the linear optimization and the node optimization are proposed. At the same time, some other algorithms for calculating the optimal path are briefly introduced, including the ant colony algorithm, the Floyd algorithm and so on. For the K algorithm, the algorithm for the optimization of the optimal path is introduced. In terms of the optimal path, there is no perfect algorithm, but the commonly used algorithm has the edge algorithm, that is to use the classical Dijkstra algorithm to calculate the optimal path between any two points first, then delete the other side of the optimal path in turn, and re calculate and compare the K optimal path. This algorithm has some advantages, only a certain advantage. Dijkstra algorithm can be used repeatedly, but this algorithm is an approximate optimal path. This paper also focuses on the proximity point algorithm, sparse matrix algorithm, bidirectional search algorithm, and the advantages and disadvantages of various algorithms with small examples. Clearly and simplest, it is the two Dijkstra algorithm. Its main idea is to extend the location of the catastrophe and the location of the security as the starting point, until the path of a node is permanently marked on both sides, that is, the connection point, and then the optimal path from the disaster location to the connection point is added from the connection point. The optimal path to the safe place is the optimal path obtained, and then continue to search on both sides, we can get the second optimal path, the third best path and so on. Later, it gives a brief introduction to the VB programming language involved in this article. Then, according to the specific tunnel parameters and ventilation network diagram of huasin mine, and using Dijkstra Based on the algorithm and the bidirectional search algorithm of the K optimal path, the operation interface of the optimal path, the K optimal path and the optimal path of multiple security exits are designed respectively, and the correctness and maneuverability of the optimal path are verified by the actual nodes. A simple statement.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TD77;TP18
【参考文献】
相关期刊论文 前10条
1 刘晓亮;;蚁群算法在GIS最短路径求解中应用的初步研究[J];城市勘测;2009年03期
2 孙殿阁,蒋仲安;改进的Dijkstra算法在矿井应急救援最佳避灾路线求取中的应用[J];矿业安全与环保;2005年05期
3 任晓翠;;基于双向搜索算法的物流配送最短路径优化研究[J];东方企业文化;2013年04期
4 姚建;田冬梅;王春雨;;瓦斯灾害时期人员安全疏散机理研究[J];华北科技学院学报;2011年04期
5 戴树贵;陈文兰;;一个求解k短路径实用算法[J];计算机工程与应用;2005年36期
6 朱静;Dijkstra算法在GIS中的优化实现[J];计算机与现代化;2005年09期
7 束建华;;群体智能及其融合算法研究[J];科技信息;2009年32期
8 陈晓军;侯海苗;;瓦斯爆炸及其预防[J];煤;2008年02期
9 王玉琨;吴锋;;矿井应急救援中最佳避灾路线的Dijkstra算法的改进实现[J];工矿自动化;2008年05期
10 陈树伟;李光远;王杰;;一种基于Dijkstra的实用多路径求解算法[J];煤炭技术;2011年01期
,本文编号:1966486
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1966486.html