瓦斯无线监测网络低功耗传感节点的研究
发布时间:2018-06-22 00:05
本文选题:无线传感器节点 + 低功耗 ; 参考:《东华大学》2014年硕士论文
【摘要】:瓦斯事故一直是煤矿安全生产的主要威胁。虽然近些年来,瓦斯监测技术不断发展,但瓦斯爆炸事件仍频频发生。将无线传感器网络应用于井下采煤工作面等处的瓦斯浓度监测,与现有有线网络相结合,则能够更为全面地监测瓦斯浓度。但传统低功耗瓦斯传感元件的功耗很大,严重限制了无线瓦斯传感器节点的工作寿命。因此如何降低无线瓦斯传感器节点的能耗是迫切需要解决的问题。 低功耗瓦斯传感器节点的设计需要从硬件和软件两个方面进行研究。在硬件设计方面,本文首先对比了低功耗的瓦斯传感元件和无线收发器件。MIPEX传感元件是俄罗斯OPTOSENSE公司最新推出的一款低功耗红外瓦斯传感器,其功耗远低于传统瓦斯传感元件。然后选择了瓦斯传感元件MIPEX.稳压器件MH5333和CC2430无线收发器件,设计了低功耗硬件节点电路。由CC2430的P1.0管脚控制MIPEX传感元件的电源。当不需要采集数据时,P1.O输出低电平,关闭MIPEX以降低能耗。 在软件设计方面,将软件程序归纳为顶层模块、数据采集模块、无线通信模块和低功耗模块,并完成了各个模块的具体程序设计。在顶层模块中,设置传感器节点处于工作/休眠的交替状态,其工作周期为10分钟。由于传感器节点采集和发送数据的时间非常短暂,因此节点在一个周期的绝大部分时间里都是处于休眠状态,有利于降低节点能耗。采用4个传感器节点和一个协调器节点构建了一个星型网络,验证了无线通信模块和串口通信程序。由于软件设计是在ZigBee协议栈中进行的,所以第二章介绍了Zigbee技术及其协议栈。 然后从理论上估计了节点的能耗。采用4节AA电池,估计出节点的工作时间为260天。又针对MIPEX传感元件电源不受控的情况下CC2430休眠与不休眠两种方案,分析了节点能耗,估计出其工作时间约为4天和70天。可见采用休眠机制可显著延长节点工作时间。最后又分析了采用TP-1.1A传感元件的节点的功耗,在6节AA电池供电和CC2430采取休眠机制的情况下其工作时间不足4天。可见,传统瓦斯传感元件低功耗性能远不如MIPEX。 最后分析了存在的问题,并提出了进一步研究的思路。
[Abstract]:Gas accident has always been the main threat to coal mine safety production. Although gas monitoring technology has been developing in recent years, gas explosion still occurs frequently. When the wireless sensor network is applied to the monitoring of gas concentration in the underground coal mining face and so on, the gas concentration can be monitored more comprehensively by combining it with the existing wired network. However, the low power consumption of the traditional gas sensor is very high, which seriously limits the working life of the wireless gas sensor node. Therefore, how to reduce the energy consumption of wireless gas sensor nodes is an urgent problem to be solved. The design of low power gas sensor nodes needs to be studied from two aspects: hardware and software. In the aspect of hardware design, this paper first compares the low power consumption gas sensor and wireless transceiver. MIPEX sensor is a new low power infrared gas sensor developed by OPTOSENSE Company of Russia, and its power consumption is much lower than that of traditional gas sensor. Then the gas sensing element MIPEX. Voltage regulator MH5333 and CC2430 wireless transceiver, low power hardware node circuit is designed. The power supply of MIPEX sensor element is controlled by P1.0 pin of CC2430. When there is no need to collect data, P 1. O output low level, turn off MIPEX to reduce energy consumption. In the aspect of software design, the software program is divided into top-level module, data acquisition module, wireless communication module and low-power module, and the specific program design of each module is completed. In the top-level module, the sensor node is set to work / hibernate alternately, its working period is 10 minutes. Because the time of collecting and sending data is very short, the sensor nodes are dormant for most of the time in one cycle, which is helpful to reduce the energy consumption of the nodes. A star network is constructed by using four sensor nodes and a coordinator node to verify the wireless communication module and serial communication program. Since the software design is carried out in the ZigBee protocol stack, the second chapter introduces Zigbee technology and its protocol stack. Then the energy consumption of nodes is estimated theoretically. With 4 AA batteries, the working time of the node is estimated to be 260 days. In view of the two schemes of CC2430 sleep and non-dormancy under the condition that the power supply of MIPEX sensor element is not controlled, the energy consumption of the node is analyzed, and the working time is estimated to be about 4 days and 70 days. It can be seen that the sleep mechanism can significantly prolong the working time of the nodes. Finally, the power consumption of the node with TP-1.1A sensor element is analyzed. The power consumption of the node is less than 4 days with 6 AA batteries and CC2430 with sleep mechanism. It can be seen that the low power consumption performance of traditional gas sensor is much lower than that of MIPEX. Finally, the existing problems are analyzed, and further research ideas are put forward.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TD76;TN92
【参考文献】
相关期刊论文 前10条
1 周邦全;;煤矿安全监测监控系统的发展历程和趋势[J];矿业安全与环保;2007年S1期
2 江福椿,朱昌平,赵帅;超声技术在气体浓度检测中的应用[J];河海大学常州分校学报;2005年02期
3 李文江;魏娟;;ZigBee无线传感器网络在瓦斯监控系统中的应用[J];黑龙江科技学院学报;2008年06期
4 李 虹;监测甲烷浓度的红外光吸收法光纤传感器[J];量子电子学报;2002年04期
5 谢宝卫,李国斌;催化燃烧型瓦斯检测仪器性能特征及影响因素浅析[J];煤矿安全;2002年03期
6 唐印伟;张海洋;;一种基于Zigbee的适用于煤矿井下无线传感的路由协议研究[J];煤矿机械;2010年03期
7 韩忠;王璐;周中阔;;基于Zigbee的矿井综采面无线传感器网络监测系统设计[J];煤矿机械;2012年01期
8 雷霖;董华莉;;基于ZigBee协议的煤矿瓦斯和温湿度监测节点设计[J];工矿自动化;2011年01期
9 刘国华,杜忻锐;半导体气敏传感器的原理及应用[J];煤炭技术;2001年09期
10 陈斯;赵同彬;高建东;杨增汪;游春霞;;基于ZigBee PRO的矿井瓦斯无线监测系统[J];煤炭技术;2011年09期
相关博士学位论文 前1条
1 王泉夫;基于WSN的工作面监控及瓦斯浓度预测关键技术研究[D];中国矿业大学;2009年
,本文编号:2050633
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2050633.html