室内场景火苗检测算法研究与视觉预警系统设计
[Abstract]:Fire has been threatening the safety of human life and property. It is an important research topic to detect fire in advance and issue early warning information. In recent twenty years, with the rapid development of science and technology, visual based fire detection technology has become a major research direction of fire prevention. Visual based fire detection and monitoring video can get more information, stronger anti-jamming ability and more suitable area. However, the research work of fire detection based on vision is mainly focused on the analysis of the flame that has already been burned, and there is no research on the flame in the early stage. In bus, gas station, flammable warehouse and other scenes, fire may cause incalculable damage. According to the requirements of these special scenes, this paper studies the static and dynamic characteristics of the fire, and puts forward a complete fire detection method. The method proposed in this paper has lower false alarm rate and higher accuracy rate. The main contents of this paper are as follows: (1) the color and contour characteristics of static flame are studied. The statistical features of flame under different color models are analyzed, and the flame image is segmented by using the color feature of fire. The best color model is obtained by comparing and analyzing the segmentation results of flame image under different color models. Chain code is used to obtain the flame boundary information, and then the Hu invariant moment feature is used to describe the shape of the flame boundary. The reliability of Fourier descriptor and Hu invariant moment feature in describing fire boundary is analyzed. (2) moving target detection in fire video is studied. Flame has its unique characteristics of motion. When it appears, it can be regarded as a moving target. After it appears, it is still. According to the characteristics of flame motion, an improved inter-frame differential method is proposed to detect the moving target and remove a large amount of background information similar to the flame color. (3) the dynamic characteristics of the flame between frames are studied. The flame is a target with stable shape, the flame between frames has continuity, and the coordinate position of flame detected between frames is correlated. The correctness of flame discrimination can be verified by comparing the information of flame position between frames. (4) support vector machine (SVM) is applied to distinguish the existence of fire. A large number of images of fire samples and negative samples were obtained from different scene videos. Support vector machine (SVM) was used to train positive and negative samples, and then test samples were used to verify the accuracy of fire discrimination. The test results show that there is a high recognition rate.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X932;TP391.41
【参考文献】
相关期刊论文 前10条
1 陈亚林;于莲芝;;基于改进Surendra背景更新算法的视频火灾检测[J];电子科技;2016年05期
2 李明轩;卢国建;胡忠日;梅秀娟;谢晓刚;;点式感温火灾探测器动作时间预测方法的应用[J];消防技术与产品信息;2015年09期
3 张鸿锋;李婉琪;曾昭君;麦志杰;;Hu不变矩在图像识别中的应用与实现[J];科技资讯;2014年30期
4 赵三琴;刘德营;丁为民;申宝营;;边界点数量对傅里叶描述子识别精度的影响[J];农业机械学报;2014年09期
5 屈晶晶;辛云宏;;连续帧间差分与背景差分相融合的运动目标检测方法[J];光子学报;2014年07期
6 王文豪;陈晓兵;刘金岭;;基于连通区域和SVM特征融合的火灾检测[J];计算机仿真;2014年01期
7 党勃;;基于SVM的图像型火灾探测系统[J];计算机光盘软件与应用;2013年04期
8 刘海生;张鑫磊;宋丽霞;;基于统计数据的全国火灾形势综合评价与预测[J];中国安全科学学报;2011年06期
9 谢勰;王辉;张雪锋;;图像阈值分割技术中的部分和算法综述[J];西安邮电学院学报;2011年03期
10 吴芸;彭真明;;分形约束二维Otsu红外图像分割方法[J];指挥控制与仿真;2011年02期
相关博士学位论文 前1条
1 康锋;基于视觉特征的早期农林火灾检测方法的基础研究[D];浙江大学;2010年
相关硕士学位论文 前10条
1 及林;基于图像特征提取的火灾检测[D];大连理工大学;2013年
2 普婕;复杂动态场景背景建模与目标检测技术研究[D];电子科技大学;2013年
3 杨峰;基于支持向量机的车身颜色识别方法研究[D];电子科技大学;2013年
4 景亮;复杂环境下自动目标识别检测技术研究[D];电子科技大学;2013年
5 徐东;基于轮廓的图像分割及目标跟踪方法研究[D];电子科技大学;2012年
6 刘培勋;基于视频监控的全天候火灾检测系统[D];吉林大学;2011年
7 钟取发;动态环境下早期烟雾、火苗的视频分级检测研究[D];浙江理工大学;2010年
8 葛勇;基于视频的火灾检测方法研究及实现[D];湖南大学;2009年
9 张金华;基于矩特征傅里叶描述的目标形状识别[D];上海交通大学;2009年
10 方浩宇;序列图像中的目标检测与跟踪方法研究[D];电子科技大学;2006年
,本文编号:2124129
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2124129.html