当前位置:主页 > 科技论文 > 安全工程论文 >

矿井通风阻力系数反演研究

发布时间:2018-07-23 08:37
【摘要】:矿井通风网络解算的理论和算法研究早在70年代就已经成熟,但时至今日通风网络解算仍然没有在矿井生产实际应用中得到广泛的应用.通风网络解算应用的3大瓶颈问题之一的通风阻力系数“测不准,总在变”的问题,时至今日该问题尚未解决,阻碍了通风网络解算在实际中的应用.巷道风阻可通过经验公式计算和通风阻力测试获取.风阻经验公式通常只是一些特殊情况的近似归纳,一些常量参数取值更多的依赖人为经验,存在较大的主观性误差;而现场测试工作量非常大且费时、费力.无论是经验公式还是现场测试,得到的风阻数据都存在误差,使得仿真计算的结果与实际的通风系统不匹配.如何通过少量代表性巷道风量、节点压力等有限的实测数据,反演矿井通风系统阻力系数,这是一项值得研究的课题.目前国内外关于通风阻力系数反演研究较少,基于国家自然基金资助项目(60772159)《基于仿真技术的矿井通风系统智能诊断系统研究》,开展本文研究工作.从流体网络三大基本定律出发,建立通风阻力系数反演的矩阵方程组形式.无论是多测点一次观测还是少测点多次观测条件下,利用有限的巷道风量和节点压力观测数据来反演通风系统中的各条巷道风阻,由于方程数小于未知变量个数,反演问题始终存在多解的情况,通风阻力系数反演问题是不适定的.基于最小二乘原理建立了通风阻力系数反演的数学模型,以实测压力与与计算压力的偏差以及实测风量与计算风量的偏差为目标函数,综合考虑了压力、风量以及通风阻力系数范围约束,通过该模型的建立将通风阻力系数反演问题转化非线性优化问题.采用遗传算法和粒子群算法来求解基于最小二乘原理的通风阻力系数反演的优化问题.针对通风阻力系数反演问题,对遗传算法和粒子群算进行了改进,增强算法的全局搜索和局部搜索能力.上述研究基础上,可以依据观测点相对灵敏度选择合适的观测数据进行通风阻力系数反演.结合通风系统灵敏度理论和聚类分析理论,提出了一种基于反映通风系统阻力系数变化的巷道风量测点和节点压力测点布置方法,对通风系统中可以观测的巷道、节点进行分类,寻找少量代表性强的分支风量测点和节点压力测量,最大可能的反映通风系统的实际运行状态,减少测试工作量.最后通过实例描述了基于粒子群算法的寺河矿二号井通风阻力系数反演过程,验证了反演方法的可行性,为进一步的研究通风阻力系数反演问题以及实际工程应用奠定了基础,具有重要的指导意义.
[Abstract]:The theory and algorithm of mine ventilation network calculation have been mature since 1970s, but the ventilation network calculation has not been widely used in mine production. One of the three bottleneck problems in the application of ventilation network calculation is the problem of "uncertainty, total change" of ventilation resistance coefficient. Up to now, this problem has not been solved, which hinders the application of ventilation network calculation in practice. Roadway wind resistance can be calculated by empirical formula and ventilation resistance test. The empirical formula of wind resistance is usually an approximate induction of some special cases, and some constant parameters are more dependent on human experience, and there is a large subjective error, while the field test work is very heavy, time-consuming and laborious. No matter the empirical formula or the field test, there are errors in the wind resistance data, which makes the simulation results do not match the actual ventilation system. How to retrieve the resistance coefficient of mine ventilation system through a small amount of representative tunnel air volume, node pressure and other limited measured data is a subject worth studying. At present, there are few researches on the inversion of ventilation resistance coefficient at home and abroad. Based on the project funded by the National Natural Fund (60772159) < Research on Intelligent diagnosis system of Mine ventilation system based on Simulation Technology ", the research work is carried out in this paper. Based on the three basic laws of fluid network, the matrix equations of ventilation resistance coefficient inversion are established. Under the condition of multiple observation points or multiple observation points, the wind resistance of each tunnel in ventilation system can be retrieved by using the limited observation data of tunnel air volume and node pressure, because the number of equations is less than the number of unknown variables. The inversion problem always has multiple solutions, and the ventilation resistance coefficient inversion problem is ill-posed. Based on the least square principle, a mathematical model of ventilation resistance coefficient inversion is established. The deviation between measured and calculated pressure and between measured and calculated air volume is taken as the objective function, and the pressure is considered synthetically. Through the establishment of the model, the inversion problem of ventilation resistance coefficient is transformed into a nonlinear optimization problem. Genetic algorithm and particle swarm optimization algorithm are used to solve the optimization problem of ventilation resistance coefficient inversion based on least square principle. For the problem of ventilation resistance coefficient inversion, genetic algorithm and particle swarm optimization are improved to enhance the global and local search ability of the algorithm. Based on the above research, the ventilation resistance coefficient can be retrieved according to the relative sensitivity of observation points. Based on the sensitivity theory of ventilation system and the cluster analysis theory, a method of layout of air flow measurement points and nodal pressure measuring points of roadway based on the change of resistance coefficient of ventilation system is proposed. The nodes are classified to find a small number of representative branch air flow measurement points and node pressure measurement to reflect the actual operating state of the ventilation system and reduce the test workload. Finally, the inversion process of ventilation resistance coefficient of Sihe No. 2 well based on particle swarm optimization is described, which verifies the feasibility of the inversion method, and lays a foundation for further research on the inversion of ventilation resistance coefficient and its practical engineering application. It has important guiding significance.
【学位授予单位】:辽宁工程技术大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TD724

【参考文献】

相关期刊论文 前9条

1 刘新;王大尉;;基于信赖域方法的矿井通风网络解算[J];辽宁工程技术大学学报(自然科学版);2008年S1期

2 赵青;杨倩;;遗传算法三种编码策略的比较研究[J];重庆文理学院学报(自然科学版);2008年02期

3 段焕丰,俞国平;改进遗传算法校核管道摩阻系数[J];管道技术与设备;2005年03期

4 仇玉良,李宁军,谢永利;喷射混凝土衬砌隧道通风阻力系数测试研究[J];中国公路学报;2005年01期

5 倪景峰,刘剑;矿井通风仿真系统数据库设计[J];辽宁工程技术大学学报;2004年05期

6 陈开岩,陈发明;矿井通风测量数据处理方法的集成与应用[J];中国矿业大学学报;2002年06期

7 钱卫宁,周傲英;从多角度分析现有聚类算法(英文)[J];软件学报;2002年08期

8 刘真祥,谢旭阳;用“加边法”提高风网解算速度[J];煤炭科学技术;2000年05期

9 张洪国,袁一星,赵洪宾;给水管网动态模型中管道阻力系数的组合灰色推定方法[J];哈尔滨建筑大学学报;1998年05期

相关会议论文 前1条

1 胡志刚;;一种新的Tikhonov正则化参数优化选取方法及其在测量中的应用[A];中国测绘学会九届四次理事会暨2008年学术年会论文集[C];2008年

相关博士学位论文 前7条

1 王玉学;油田注水管网管道摩阻系数校正方法研究[D];东北石油大学;2010年

2 邓志亮;两类不适定问题的正则化方法研究[D];兰州大学;2010年

3 常文杰;煤矿事故致因分析及约束式自主安全管理模式的研究[D];中国矿业大学(北京);2010年

4 朱灿;实数编码遗传算法机理分析及算法改进研究[D];中南大学;2009年

5 陈宇辉;给水管网动态模型维护与校验方法研究[D];同济大学;2006年

6 杨小兵;聚类分析中若干关键技术的研究[D];浙江大学;2005年

7 贾进章;矿井火灾时期通风系统可靠性研究[D];辽宁工程技术大学;2004年



本文编号:2138830

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2138830.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户be6a2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com