当前位置:主页 > 科技论文 > 安全工程论文 >

机械喷雾强化对瓦斯水合分离影响研究

发布时间:2018-07-29 14:07
【摘要】:加强瓦斯水合反应的热量、物质传递过程,有效控制水合反应速率、提高水合物产量是实现瓦斯水合固化储运技术工业化应用的关键。因此,本文在诸多国内外科研工作学者研究基础上,针对甲烷含量为60%、70%、80%的高浓度瓦斯混合气,分别开展纯水静态(空白)体系和机械喷雾强化体系水合反应实验,考察机械喷雾手段、雾化喷嘴夹角、喷嘴流量对瓦斯水合物生长速率、CH4回收率、分离因子和分配系数的影响并基于传热-传质理论模型初步分析了影响机理。纯水静态体系和机械喷雾体系实验结果对比表明:瓦斯混合气样G1、G2、G3在机械喷雾强化体系下的水合分离效果都优于纯水静态体系,其对应的水合物生长速率最大值分别为0.395×10-6、0.379×10-6、0.367×10-6m3/min,相比纯水静态体系分别提高了5.41、2.63、3.71倍;CH4回收率最大值分别为24.23%、25.27%、24.51%,相比纯水静态体系分别提高了6.18、2.61、7.19倍;分离因子最大值分别为1.89、1.83、1.95,相比纯水静态体系分别提高了1.62、1.49、1.74倍;分配系数最大值分别为1.27、1.19、1.13,相比纯水静态体系分别提高了1.2、1.12、1.11倍。综上所述,在三种瓦斯气样都采用机械喷雾手段强化水合分离过程的状况下,对比相应的纯水静态体系,气样G1在水合物生长速率、分配系数方面改善幅度最大;气样G3在CH4回收率、分离因子方面改善幅度最大。不同雾化喷嘴夹角实验结果对比表明:相同驱动力、喷嘴流量实验条件下,瓦斯混合气样G1、G2、G3的水合物生长速率、CH4回收率、分离因子和分配系数受雾化喷嘴夹角影响规律一致,都是随夹角度数的升高先增大后减小,影响顺序为:45°30°60°90°。分析认为,30°、45°雾化喷嘴对反应体系水合物生长环境影响较小,60°、90°雾化喷嘴对反应体系水合物生长环境影响较为恶劣。不同喷嘴流量实验结果对比表明:相同驱动力、雾化喷嘴夹角实验条件下,瓦斯混合气样G1、G2、G3的水合物生长速率、CH4回收率、分离因子和分配系数受喷嘴流量影响规律也一致,流量为20ml/min的喷嘴对反应体系水合分离促进效果优于流量为10ml/min的喷嘴。分析认为,增大喷雾循环体系喷嘴流量,不仅能够加强气液间的物质(分子)传递过程,也能加快反应体系水合物生成热的流失速率。本文研究成果对后续相关研究工作的实验开展与水合物工业生产具有重要科学意义与指导价值。
[Abstract]:The key to realize the industrial application of gas hydration curing storage and transportation technology is to strengthen the heat transfer process of gas hydration reaction effectively control the hydration reaction rate and increase the hydrate production. Therefore, based on the research of many domestic and foreign researchers, the hydration experiments of pure water static (blank) system and mechanical spray strengthened system were carried out for the high concentration gas mixture with methane content of 60% or 70%. The effects of mechanical spray method, atomizing nozzle angle, nozzle flow rate on methane hydrate growth rate and CH4 recovery, separation factor and distribution coefficient were investigated. Based on the heat and mass transfer theory model, the influence mechanism was preliminarily analyzed. The experimental results of pure water static system and mechanical spray system show that the hydration separation effect of gas mixture G1G2G3 is better than that of pure water static system. The maximum rate of hydrate growth was 0.395 脳 10-6 (0.379 脳 10-6) 0.367 脳 10-6m3 / min, respectively. Compared with the pure water static system, the maximum recovery rate of CH4 was increased by 5.41 ~ 2.63 ~ 3.71 times, respectively, and the maximum recovery rate of Ch _ 4 was 24.23 ~ 25.27 ~ 24.51% and 6.18 ~ 2.61g ~ (7.19) times higher than that of pure water static system, respectively. The maximum value of separation factor was 1.89 ~ 1.83 ~ 1.95, which was 1.62 ~ 1.49 ~ 1.74 times higher than that of pure water static system, and the maximum partition coefficient was 1.27 ~ 1.19 ~ 1.13, 1.22 ~ 1.12 ~ 1.11 times higher than that of pure water static system, respectively. In conclusion, under the condition that all three kinds of gas samples strengthen hydration separation process by mechanical spray, compared with the corresponding pure water static system, the gas sample G1 has the greatest improvement in hydrate growth rate and distribution coefficient. Gas sample G 3 has the greatest improvement in CH4 recovery and separation factor. The experimental results of different atomization nozzle angles show that under the same driving force and nozzle flow test conditions, the gas mixture G1G2G3 hydrate growth rate and CH4 recovery rate, separation factor and distribution coefficient are consistent with the influence of atomizing nozzle angle on gas hydrate growth rate. The influence order is 45 掳30 掳60 掳90 掳. It is considered that the influence of 30 掳~ 45 掳atomization nozzle on the hydrate growth environment of the reaction system is less than that of the 60 掳~ 90 掳atomizing nozzle on the reaction system hydrate growth environment. The experimental results of different nozzles showed that under the same driving force and atomization nozzle angle, the gas mixture G1G2G3 hydrate growth rate and CH4 recovery rate, separation factor and distribution coefficient influenced by nozzle flow rate were also consistent. The effect of the nozzle with flow rate of 20ml/min on the hydration separation of reaction system is better than that of the nozzle with flow rate of 10ml/min. It is concluded that increasing the nozzle flow rate of the spray cycle system can not only enhance the material (molecular) transfer process between gas and liquid, but also accelerate the heat loss rate of hydrate formation in the reaction system. The research results in this paper are of great scientific significance and guiding value for the experimental development of related research work and the production of hydrate industry.
【学位授予单位】:黑龙江科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712

【参考文献】

相关期刊论文 前10条

1 吴强;张家豪;高霞;刘传海;;干水和THF-SDS对瓦斯水合分离的影响[J];黑龙江科技大学学报;2016年04期

2 吴强;张家豪;高霞;刘传海;;热力学促进剂对瓦斯水合物相平衡的影响[J];黑龙江科技大学学报;2016年03期

3 吴强;王世海;张保勇;刘昌岭;高霞;;THF对高浓度CH_4瓦斯水合分离效果影响实验[J];煤炭学报;2016年05期

4 吴强;周竹青;高霞;张强;张保勇;;NaCl溶液中多组分瓦斯水合物的成核诱导时间[J];煤炭学报;2015年06期

5 吴强;岳彦兵;张保勇;高霞;张强;吴琼;;THF-SDS对瓦斯水合分离过程温度场分布影响[J];煤炭学报;2015年04期

6 吴强;朱福良;高霞;张保勇;;晶体类型对含瓦斯水合物煤体力学性质的影响[J];煤炭学报;2014年08期

7 吴琼;吴强;张保勇;高霞;;丙烷对瓦斯混合气水合物相平衡的影响[J];煤炭学报;2014年07期

8 吴强;;煤矿瓦斯水合化分离试验研究进展[J];煤炭科学技术;2014年06期

9 张强;吴强;张保勇;高霞;;干水对瓦斯混合气水合分离动力学影响研究[J];中国矿业大学学报;2014年04期

10 刘煌;吴雨晴;陈光进;刘蓓;杨兰英;潘勇;;油水乳液分离沼气实验研究[J];化工学报;2014年05期

相关硕士学位论文 前3条

1 叶洋;TBAB体系水合物法提纯低浓度含氧煤层气的实验研究及过程模拟[D];重庆大学;2012年

2 徐涛涛;低浓度瓦斯水合物生成动力学及促进剂实验研究[D];黑龙江科技学院;2011年

3 庞博;低浓度煤矿抽采瓦斯水合分离相平衡热力学实验研究[D];黑龙江科技学院;2011年



本文编号:2152920

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2152920.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b8e74***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com