基于因子分析及卡尔曼滤波的瓦斯涌出量预测研究
[Abstract]:Mine gas disaster threatens coal mine safety production. It is the foundation of studying mine gas emission law and gas geology law to grasp the prediction method of gas emission quantity and to realize accurate prediction of mine gas emission quantity. It is of great significance to the prevention and control of mine gas disaster and the life support of underground personnel. In this paper, a gas mine of Yankuang Group is taken as the experimental research object. From the two aspects of mine geological conditions and mining conditions, the interaction between gas emission and its influencing factors is studied. To explore the influence factors of gas emission quantity has many factors, the action degree is not the same; There is a complex nonlinear relationship between gas emission and the change of working face propulsion with time. In view of the fact that there are many factors affecting the quantity of gas emission and the degree of action is different, a method based on factor analysis is put forward to select the prediction index of gas emission quantity. By extracting the effective same common factors from the original variables, the information overlap between the original variables is reduced, the dimension reduction of the original variables is realized, and the prediction index of the gas emission quantity is obtained. Aiming at the nonlinearity between gas emission prediction index and gas emission and its own time-varying characteristics, a gas emission prediction model coupled with BP neural network and Kalman filter is constructed. The BP neural network not only realizes the nonlinear mapping identification of gas emission prediction index, but also provides the state variable for the recursive equations of Kalman filter theory. When the prediction index changes with the advance of the working face, the BP neural network can effectively identify the change of the index information to the state variables of Kalman filter, and realize the dynamic prediction of gas emission. The application of factor analysis, BP neural network Kalman filter and so on in the prediction of mine gas emission is studied. The MATLAB software is used as the development platform, and the graphical user interface (GUI) is used as the software development tool. The software of gas emission prediction based on factor analysis and Kalman filter is designed and developed. The software effectively integrates the module of selecting prediction index by factor analysis method and the prediction model of coupling BP neural network and Kalman filter. The application examples show that the software has the characteristics of convenient operation, friendly interface and high prediction precision, and it can meet the actual requirements of the prediction of mine gas emission.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD712.5
【参考文献】
相关期刊论文 前10条
1 赵云平;施龙青;高卫富;王颖;刘玉;;我国煤矿转型发展期内煤矿事故统计分析[J];煤炭技术;2016年09期
2 袁亮;;我国深部煤与瓦斯共采战略思考[J];煤炭学报;2016年01期
3 王艳双;;矿井瓦斯涌出量预测研究中的数学模型[J];煤炭技术;2015年11期
4 赵可可;;基于小波神经网络的瓦斯涌出量预测[J];煤炭与化工;2015年10期
5 刘彦伟;薛文涛;李志强;;矿山统计法瓦斯涌出量预测模型存在的问题与校正[J];煤矿安全;2015年05期
6 徐青云;赵耀江;李永明;;我国煤矿事故统计分析及今后预防措施[J];煤炭工程;2015年03期
7 徐青伟;王兆丰;;瓦斯涌出量预测的GM(1,1)模型改进[J];煤炭技术;2015年01期
8 张春璞;;分源预测法在生产矿井瓦斯涌出量预测中的应用[J];煤炭技术;2014年10期
9 潘永福;;分源预测法参数确定及应用研究[J];中州煤炭;2014年04期
10 贾花萍;;灰色Elman神经网络的矿井瓦斯涌出量预测[J];计算机技术与发展;2014年06期
相关会议论文 前1条
1 张智明;;重庆南桐矿业公司鱼田堡煤矿瓦斯地质统计法预测预报区域性煤与瓦斯突出[A];2006年全国瓦斯地质学术年会论文集[C];2006年
相关博士学位论文 前4条
1 陈祖云;煤与瓦斯突出前兆的非线性预测及支持向量机识别研究[D];中国矿业大学;2009年
2 谢乃明;灰色系统建模技术研究[D];南京航空航天大学;2008年
3 赵志刚;煤与瓦斯突出的耦合灾变机制及非线性分析[D];山东科技大学;2007年
4 高雷阜;煤与瓦斯突出的混沌动力系统演化规律研究[D];辽宁工程技术大学;2006年
相关硕士学位论文 前10条
1 秦燃;基于主成分分析的BP神经网络矿井瓦斯涌出量预测研究[D];北京交通大学;2015年
2 吕坤坤;基于二阶灰色神经网络的工作面瓦斯涌出量预测[D];安徽理工大学;2015年
3 刘晟;综采工作面瓦斯涌出预测及其突出危险性的研究[D];太原理工大学;2013年
4 刘晓国;江西萍乡巨源煤矿瓦斯地质特征研究[D];安徽理工大学;2012年
5 秦勇;基于灰色神经网络的煤矿瓦斯涌出量预测模型研究[D];太原科技大学;2011年
6 刘建雄;矿井采煤工作面瓦斯涌出规律研究[D];西安科技大学;2011年
7 白宇;基于差值灰色径向基函数神经网络的瓦斯涌出量预测[D];太原理工大学;2011年
8 姚念岗;运裕矿井瓦斯地质规律与瓦斯预测[D];河南理工大学;2011年
9 高倩;基于模糊理论的谱聚类算法研究与应用[D];江南大学;2009年
10 徐进华;基于灰色系统理论的数据挖掘及其模型研究[D];北京交通大学;2009年
,本文编号:2400835
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2400835.html