当前位置:主页 > 科技论文 > 安全工程论文 >

基于本体论的铁路风险关联知识发现研究

发布时间:2019-01-27 19:26
【摘要】:在传统的重载铁路运输风险预警预控研究中,往往注重风险与事故之间的线性因果关联,然而现实中事故致因机理是风险之间相互影响、聚合、升级最终形成的复杂情境,为了有效的减少事故发生频率、对风险源进行前期预控,有必要研究风险源之间的关联特性与关联模式。本文针对重载铁路的事故特点,结合文本挖掘与数据挖掘,基于本体论的知识发现和知识推理方法研究风险源关联特性,为风险源的前期预控提供精准判断。论文的主要研究内容如下:(1)铁路风险本体构建:基于历年的事故报告、描绘事故情境与事故致因机理,通过解析不同事故情境下各类(环境、设备、人员等)风险源的致因机理,以事故-风险源等知识重用为目的,构建初始的重载铁路风险本体模型。(2)铁路风险分析:针对重载铁路的风险隐患数据库(半结构数据与文本数据),以文本分析的手段提取半结构化数据中风险源关键词,提取可能影响事故发生的风险因素,并验证风险因素对事故发生的影响。将通过验证的风险因素添加到重载铁路风险本体中。(3)基于隐患数据库的数据挖掘:依据铁路事故升级具有滞后性特征,在传统的Apriori关联规则算法的基础上增加时序分析能力,使用改进的算法对国内某重载铁路公司的风险隐患数据进行挖掘分析,挖掘风险因素之间的关联模式,进一步解析铁路事故产生的潜藏致因机理,扩充调整基于事故分析的重载铁路风险本体模型。(4)铁路风险本体生成:提出一种面向重载铁路风险数据的重载铁路领域本体的半自动构建方法进行本体构建。半自动的构建方法,保障本体知识推理效率,以及构建本体的可靠性和领域知识的准确性和专业性,为基于结构化和半结构化数据源进行本体学习提供可行的方法。(5)铁路风险本体学习:基于风险关联知识,研究重载铁路风险本体知识推理,提出基于本体论的重载铁路知识建模方法;提出的铁路风险关联知识推理机制,促进了重载铁路风险知识应用,进而实现事故的提前预警准确性以及事中处理的有效性,同时也完成铁路风险知识的共享和重用,实现铁路风险关联知识的快速获取和维护进程。
[Abstract]:In the traditional research of early-warning and pre-control of heavy haul railway transportation risk, the linear causal relationship between risk and accident is often emphasized. However, in reality, the mechanism of accident cause is the interaction, aggregation and upgrading of the complex situation. In order to effectively reduce the frequency of accidents and pre-control the risk sources, it is necessary to study the correlation characteristics and patterns between the risk sources. According to the accident characteristics of heavy haul railway, combining text mining and data mining, this paper studies the risk source association characteristics based on ontology knowledge discovery and knowledge reasoning method, which provides accurate judgment for pre-control of risk source. The main contents of this paper are as follows: (1) the construction of railway risk ontology: based on the accident reports over the years, describe the accident situation and accident cause mechanism, analyze the various types (environment, equipment) under different accident situations, The causative mechanism of risk sources is aimed at the reuse of knowledge such as accident and risk sources, Constructing the initial heavy haul railway risk ontology model. (2) Railway risk analysis: aiming at the risk hidden trouble database (semi-structural data and text data) of heavy haul railway, the key words of risk source in semi-structured data are extracted by text analysis. Extract the risk factors that may affect the accident and verify the impact of the risk factors on the accident. The verified risk factors are added to the heavy haul railway risk ontology. (3) data mining based on hidden danger database: according to the characteristics of lag in railway accident upgrading, On the basis of the traditional Apriori association rules algorithm, the ability of timing analysis is added, and the improved algorithm is used to mine and analyze the hidden risk data of a domestic heavy-haul railway company, and to mine the association patterns between risk factors. To further analyze the underlying cause mechanism of railway accidents, Expand and adjust the heavy-haul railway risk ontology model based on accident analysis. (4) Railway risk ontology generation: a semi-automatic ontology construction method for heavy-haul railway domain ontology for heavy haul railway risk data is proposed. The semi-automatic construction method ensures the efficiency of ontology knowledge reasoning, the reliability of ontology construction and the accuracy and professionalism of domain knowledge. It provides a feasible method for ontology learning based on structured and semi-structured data sources. (5) Railway risk ontology learning: based on risk correlation knowledge, the heavy haul railway risk ontology knowledge reasoning is studied. An ontology based modeling method for heavy haul railway knowledge is proposed. The proposed reasoning mechanism of railway risk association knowledge promotes the application of heavy-haul railway risk knowledge, and realizes the accuracy of early warning of accidents and the effectiveness of in-process handling. At the same time, it also accomplishes the sharing and reuse of railway risk knowledge. To realize the rapid acquisition and maintenance of railway risk related knowledge.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U298;TP311.13

【参考文献】

相关期刊论文 前10条

1 徐增林;盛泳潘;贺丽荣;王雅芳;;知识图谱技术综述[J];电子科技大学学报;2016年04期

2 王锋;李芳颂;高晓峰;卫椺;;大数据知识服务平台构建关键技术研究[J];通讯世界;2016年14期

3 左丽华;;词频分析及常用工具比较研究[J];图书馆学刊;2016年06期

4 王向前;张宝隆;李慧宗;;本体研究综述[J];情报杂志;2016年06期

5 刘峤;李杨;段宏;刘瑶;秦志光;;知识图谱构建技术综述[J];计算机研究与发展;2016年03期

6 崔妍;包志强;;关联规则挖掘综述[J];计算机应用研究;2016年02期

7 陈平华;陈传瑜;洪英汉;;一种结合关联规则的协同过滤推荐算法[J];小型微型计算机系统;2016年02期

8 蔡炳万;石宇强;李明辉;张敏;;基于本体的贝叶斯网络知识推理研究[J];机械设计与制造;2016年01期

9 杨丁颖;黄健陵;;铁路工程项目风险管理体系的构建与运行[J];铁道科学与工程学报;2015年06期

10 季华安;;浅析铁路工务系统风险管理存在的问题及对策[J];铁路工程造价管理;2015年06期

相关博士学位论文 前2条

1 唐守利;基于本体的云服务语义检索模型研究[D];吉林大学;2016年

2 魏圆圆;基于本体论的农业知识建模及推理研究[D];中国科学技术大学;2011年

相关硕士学位论文 前10条

1 刘鑫峰;基于Web数据挖掘的个性化推荐系统研究[D];长春工业大学;2016年

2 李自胜;基于动态KMV模型和时序关联规则的商业银行信用风险研究[D];浙江财经大学;2016年

3 张磊;基于铁路安全风险管理理论的班组激励机制研究[D];西南交通大学;2015年

4 和有元;大型煤制天然气项目风险管理研究[D];中国科学院大学(工程管理与信息技术学院);2015年

5 张万鹏;铁路风险管理方法及信息处置平台研究[D];中国铁道科学研究院;2014年

6 于辰成;基于BP神经网络的高速铁路风险评价模型研究[D];西南交通大学;2014年

7 康东;中文文本挖掘基本理论与应用[D];苏州大学;2014年

8 王漪;文本挖掘技术的研究及其在教学平台中的应用[D];北京交通大学;2014年

9 吴彦伟;智能查询中的本体推理机制及其应用研究[D];西安电子科技大学;2014年

10 赵雁峰;铁路货运安全风险管理研究[D];西南交通大学;2013年



本文编号:2416614

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2416614.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2d947***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com