基于显著性检测和烟雾时空特征的视频火灾探测方法研究
[Abstract]:Fire is one of the factors that seriously threaten the production and life safety of the major categories. The fire detection and alarm system is of great significance to protect the life and property of the people and to maintain social stability. The conventional smoke-sensing and temperature-sensing fire detector which is widely used at present has a certain limitation in the application places (space, time, etc.), and is not suitable for fire detection in high-story buildings and open spaces, has non-contact and rapid response, Video fire detection technology, which has the advantages of large detection range, active visual and other advantages, comes into being, and is applied to the fire monitoring of the ground building, the plant area, the forest and other places. The current video fire detection technology mainly focuses on the aspects of video flame detection, infrared detection and the like, and the video smoke detection technology with greater advantages in the timeliness has many problems to be solved in theory, method and application, such as the lack of standard test video library, The method for extracting the suspected smoke area is not in-depth study, and there is a lack of effective characteristics in the classification of similar moving targets, and the smoke detection is false and high. The purpose of this paper is to study the theory and method of early fire smoke detection and provide theoretical and technical support for the development and application of video fire detection technology. In this paper, a video shooting system is designed in the standard test room and the low-pressure laboratory of the fire science national key laboratory in China's science and technology university, and the video image sequence of the smoldering smoke is obtained, the video segmentation, feature extraction and analysis of the smoldering smoke are carried out, the feature recognition and the like are carried out, And then a complete video fire detection system is designed, and the feasibility of the application of the system in the low-pressure environment is experimentally verified. The specific research work is as follows: (1) Create a negative-burning smoke video base database. The fire smoke standard video image database is the raw data base of the research on the principle of video fire smoke detection and the development of the smoke identification method. in that standard test room and the low-pressure experiment cabin of the middle and large fire laboratory, a fire-smoldering smoke video acquisition platform is built, wood and cotton ropes are used as experimental materials to generate smoldering smoke, and the smoke video acquisition is carried out by using a high-definition camera, an infrared camera, a high-speed camera and the like, The collected video is standardized, and a negative-burning smoke video base database is finally established. (2) An early smoke suspected area segmentation method based on saliency detection was proposed and completed. In light of that visual attention mechanism of the human eye, the smoldering smoke can be regarded as a region of turbulence and gray in the video, and the suspected smoke region is divide by a saliency detection method based on a visual attention model combined with the top-down and the bottom-up. firstly, the brightness image and the optical flow pattern of the video are enhanced by using a non-linear enhancement method, the saliency spectrum is calculated by the enhanced image, and then the energy function of the motion foreground tectonic movement calculated by the Gaussian mixture model (GMM) is used to estimate the significance spectrum, The suspected smoke area is divided. The experimental results show that the method has better segmentation effect and can meet the demand of real-time video smoke detection. And (3) developing a video smoke detection algorithm based on the smoke-time characteristic of the smoke and the tracking method before the detection. In order to improve the accuracy and the robustness of the detection algorithm, each candidate smoke area is tracked, and the air space and time domain characteristic information are integrated in a time window for fire identification. The entropy and contrast characteristics of the turbulence smoke texture can be described by the analysis of the physical process and the smoke component of the smoke formation, and the characteristic validity verification is carried out by the experiment. The probability of fire is estimated by the cumulative estimation of multiple classification results of a time window in combination with the texture space-time characteristics, the color characteristics and the speed characteristics of the smoldering smoke image, the training support vector machine classification model. The algorithm performance is tested and verified using video containing smoke and non-smoke. The experimental results show that the framework is reasonable and effective, and other functions such as flame detection can be accomplished quickly by modifying the components in the frame. Finally, the influence of the smoke concentration on the detection of the video smoke is analyzed, and the smoke concentration is an important factor that needs to be considered in the research of fire detection and industrial application. And (4) designing a smoldering smoke video detection system and testing the applicability of the system under the low pressure environment. And the video smoke detection system is developed according to the experimental results and the video smoke detection method of the earlier research. the smoke video under different air pressure is analyzed by using a negative-burning smoke segmentation method based on the significance detection and a detection front tracking algorithm, the smoke area of the smoldering smoke under different air pressure is divided, the smoke area characteristic is extracted, and then the brightness, the speed mean value and the variance of the smoke area in the video are extracted, The characteristics of the entropy and contrast of the texture are analyzed and tested by using a variety of classifiers under different air pressure. The experimental results show that the proposed method and features are still applicable in the low-pressure environment.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X924.3;X932
【相似文献】
相关期刊论文 前10条
1 程晓舫,王瑞芳,张维农,王亚雄;火灾探测的原理和方法(上)[J];中国安全科学学报;1999年01期
2 程晓舫,王瑞芳,张维农,王亚雄;火灾探测的原理和方法(下)[J];中国安全科学学报;1999年02期
3 潘刚;火灾探测报警技术发展趋势[J];消防科学与技术;2002年01期
4 陈启元;浅谈火灾探测报警产品在选择使用中容易出现的误区[J];山东消防;2003年05期
5 潘刚,马骝;火灾探测传感信息提取方法的研究[J];消防技术与产品信息;2004年03期
6 邱祥,高宇;高大空间火灾探测及灭火新技术的应用前景[J];房材与应用;2004年05期
7 翁立坚,宋立巍;一种关于点型探测器火灾探测能力的评估方法[J];火灾科学;2005年02期
8 王丽萍;方厚辉;李亨;;基于多传感器融合技术的高大空间火灾探测[J];科学技术与工程;2006年01期
9 王晔;;火车站极早期报警和可靠火灾探测[J];消防技术与产品信息;2007年02期
10 董文辉;王卓甫;梅志斌;厉剑;;火灾探测综合评估试验台测控系统集成[J];建筑电气;2007年04期
相关会议论文 前10条
1 范雪成;;智能技术在火灾探测领域的发展趋势[A];河南省土木建筑学会2008年学术交流会论文集[C];2008年
2 王乐天;王际锦;陈忠信;;智能技术在火灾探测领域的应用[A];中国消防协会年会面向新世纪消防学术研讨会论文集[C];1999年
3 丁宏军;赵英然;;谈火灾探测报警产品的设计生产和使用中存在的误区[A];中国消防协会年会面向新世纪消防学术研讨会论文集[C];1999年
4 潘刚;;火灾探测报警技术发展趋势[A];展望新世纪消防学术研讨会论文集[C];2001年
5 洪赢政;陈伟;;微波火灾探测终端信号处理研究[A];第十届中国科协年会论文集(一)[C];2008年
6 柳毅;胡忠日;;视频火灾探测在地铁中的应用研究[A];2008铁路暖通空调学术年会论文集[C];2008年
7 蒋玲;;国外火灾探测及疏散技术发展现状概述[A];2011中国消防协会科学技术年会论文集[C];2011年
8 张昊;;高大空间场所火灾探测产品的适用性及设置应用[A];2011中国消防协会科学技术年会论文集[C];2011年
9 刘昕;;火灾探测报警控制系统及其死机和复位[A];第七届北京青年科技论文评选获奖论文集[C];2003年
10 高俊林;余仲秋;孟伟;;大旷场分布式红外火灾探测研究[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年
相关重要报纸文章 前10条
1 记者 李陈续 通讯员 胡胜友;我火灾探测与灭火集成技术实现智能化[N];光明日报;2005年
2 驻山东记者 黄亦镪 通讯员 李豹松 纪永红;青岛推广普及独立式火灾探测报警器[N];中华建筑报;2011年
3 金晓;天津市取得初步成效[N];人民公安报·消防周刊;2007年
4 朱磊;中国企业包揽“金牌”[N];人民日报;2008年
5 刘爱国邋特约记者 李书宝;十项硬性措施集中整治“三合一”场所[N];洛阳日报;2007年
6 何铁军;贵州省为独立式感烟火灾探测报警装置立标[N];人民公安报·消防周刊;2007年
7 消宣;公安部消防局推广一批新技术[N];人民公安报·消防周刊;2006年
8 邵红旗;我市推进消防安全集中整治工作[N];周口日报;2007年
9 记者 查予然 通讯员 林敏;三年内彻底清除“三合一”场所[N];安庆日报;2011年
10 记者 张黎明;出租房定消防标准:若被亮“红牌”不能出租[N];金华日报;2011年
相关博士学位论文 前3条
1 贾阳;基于显著性检测和烟雾时空特征的视频火灾探测方法研究[D];中国科学技术大学;2016年
2 高雪清;光纤光栅感温火灾探测方法的研究[D];武汉理工大学;2006年
3 厉剑;火灾探测信号处理算法及其性能评估方法研究[D];大连理工大学;2006年
相关硕士学位论文 前10条
1 孙贯华;基于光电感烟的火灾探测报警器的设计与实现[D];东北大学;2013年
2 雷倩茹;基于信息融合技术的火灾探测方法研究[D];华北电力大学(北京);2010年
3 张留生;基于多传感器信息融合的智能建筑火灾探测研究[D];江西理工大学;2013年
4 张玮;火灾探测及联动报警系统的设计[D];河北科技大学;2010年
5 李小亚;基于人工智能的数据融合技术在火灾探测中的应用研究[D];广东工业大学;2005年
6 高强;基于模糊神经网络火灾智能报警系统的研究[D];沈阳航空工业学院;2007年
7 张晶;多传感器信息融合在火灾探测中的应用研究[D];广东工业大学;2003年
8 陈莹;大空间图像型火灾探测和自动灭火技术的研究[D];天津大学;2006年
9 白巍;FBG感温火灾探测中的信号处理研究[D];武汉理工大学;2006年
10 薛节;图像型火灾探测及火源定位系统的研究与实现[D];东华大学;2015年
,本文编号:2508649
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2508649.html