当前位置:主页 > 科技论文 > 安全工程论文 >

高光谱影像船舶溢油目标异常检测与识别

发布时间:2023-03-19 15:23
  海上溢油对海洋环境、海上运输造成了严重的影响,而这些溢油危害主要来源于存油基地、海上钻井平台以及船舶。溢油发生后,实时掌握溢油的分布信息对后续的应急决策、清污工作极其重要。遥感技术因其具有能够获取大面积信息的优势,在溢油检测研究中发挥着重要的作用。与雷达、激光、多光谱影像数据相比,高光谱遥感影像具有监测范围广、连续波谱信息、高维度特征的优势,在环境监测中扮演着重要的角色。近些年随着传感器技术、机器学习技术的发展,高光谱图像识别技术逐步向“空谱”结合处理以及深度学习方向发展。但当前基于高光谱油膜识别研究中,极少采用“空谱”联合技术和深度学习技术;在系统集成方面,当前的研究只是针对于某种模型进行,并没有将多个模型进行系统集成,形成可操作的软件系统。针对上述存在的问题和目前技术需求,本文在高光谱油膜相对厚度识别以及船舶初步检测方面做了相关研究。首先,采用一种基于异常检测的方法,在提取油膜感兴趣区域的同时找到船舶感兴趣区域;之后将支持向量机、BP-神经网络以及基于支持向量机的栈式自编码网络成功的应用到船舶溢油目标识别中,其中基于支持向量机的栈式自编码网络在验证集上总体分类精度为71%,Kapp...

【文章页数】:69 页

【学位级别】:硕士

【文章目录】:
摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
    1.2 国内外研究现状
    1.3 研究目标和主要工作
        1.3.1 研究目标
        1.3.2 主要工作
    1.4 文章结构
第2章 船舶溢油目标的异常检测
    2.1 异常检测原理
        2.1.1 Rx算子
        2.1.2 Rx变种算法
    2.2 船舶和溢油目标的异常检测结果与分析
    2.3 本章小结
第3章 基于光谱信息溢油目标识别
    3.1 支持向量机与BP-神经网络
        3.1.1 基于支持向量机的油膜识别
        3.1.2 基于BP-神经网络的油膜识别
    3.2 基于栈式自动编码器的神经网络
        3.2.1 自动编码器
        3.2.2 栈式自动编码器
    3.3 数据来源与处理
    3.4 模型评价方法
    3.5 实验结果与分析
        3.5.1 支持向量机的油膜识别模型
        3.5.2 BP神经网络油膜识别模型
        3.5.3 SAE网络油膜识别模型
        3.5.4 结果分析
    3.6 本章小结
第4章 基于空谱联合的溢油目标识别
    4.1 基于空谱联合的SAE模型
    4.2 卷积神经网络
        4.2.1 感受野
        4.2.2 参数共享
        4.2.3 卷积神经网络结构
    4.3 基于卷积神经网络的油膜识别实验
        4.3.1 深度学习框架
        4.3.2 CNN模型
        4.3.3 实验结果与分析
    4.4 本章小结
第5章 算法集成与系统实现
    5.1 系统设计
        5.1.1 系统结构设计
        5.1.2 系统功能设计
    5.2 系统实现
        5.2.1 系统开发技术
        5.2.2 系统功能界面
    5.3 本章小结
结论
参考文献
致谢
作者简介



本文编号:3765487

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/3765487.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5ee31***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com