玄武岩纤维增强聚丙烯复合材料力学性能的研究
本文关键词:玄武岩纤维增强聚丙烯复合材料力学性能的研究 出处:《中北大学》2017年硕士论文 论文类型:学位论文
【摘要】:本论文利用环保材料玄武岩纤维对聚丙烯材料进行增强增韧的改性研究,通过对聚丙烯接枝改性引入PP-g-GMA(聚丙烯接枝甲基丙烯酸环氧丙酯)材料,通过熔融共混乙烯-丙烯-非共轭二烯烃的三元共聚物(EPDM)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚烯烃弹性体(POE)、和甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)以改善复合材料的界面性能从而提高其力学性能,通过力学实验、扫描电子显微镜、差示扫描量热仪、X射线衍射及热重分析实验等一系列实验对BF/PP复合材料及掺入四种弹性体材料进行探索实验,通过实验分析和计算,研究相容剂和弹性体对聚丙烯改性后的综合性能进行评价,从而使其更好的应用在汽车领域。研究结果如下所示:在玄武岩纤维改性聚丙烯复合材料中,通过对聚丙烯接枝改性引入PP-g-GMA(聚丙烯接枝甲基丙烯酸环氧丙酯)材料,以改善复合材料的界面性能从而提高力学性能。结果表明:玄武岩纤维改性聚丙烯复合材料的力学性能相比纯聚丙烯的力学性能有很大的提高。随着纤维BF含量增加,复合材料的整体力学性能逐渐增强,拉伸屈服强度由38MPa提高到89MPa,尤其是缺口冲击强度由1.43KJ·m-2提高到4.53KJ·m-2。当纤维含量超过30%时,复合材料力学性能基本变化较小。通过相容剂PP-g-GMA的加入对复合材料的改性,能够使得玄武岩纤维与聚丙烯基体之间具有更好的界面粘结性,并且复合材料在承受载荷时,增加吸收外力能力,使得抗冲击性能显著提高,实现PP复合材料的增强。由结晶动力学实验分析可知,不掺杂纤维材料的纯聚丙烯的结晶温度较高,随着结晶温度提高,结晶速率提高,两种模型下动力学分析(Ozawa方法和Mo模型)计算可得的α值和m值较为恒定,晶体生长方式与成核机理基本一致。结晶熔融的行为表现取决于冷却速率大小。冷却速率越慢,结晶的温度区域越高,结晶成核时间越长;冷却速率越快,结晶越不完善,温度会走低。XRD衍射结果,随着BF含量的增加,也出现了β峰,但衍射峰的衍射强度很低,说明也只是出现了微量的β晶型,得出结论相容剂和弹性体的同时加入会对晶型影响较小。
[Abstract]:In this paper, the environmental protection material basalt fiber was used to strengthen and toughen polypropylene materials. PP-g-GMA (polypropylene grafted epoxy propyl methacrylate) was introduced by grafting modification of polypropylene, and the terpolymer EPDM was prepared by melt blending ethylene, propylene and unconjugated diolefin. Acrylonitrile-butadiene-styrene copolymer, polyolefin elastomer (POE). Methyl methacrylate butadiene-styrene (MBS) was used to improve the interfacial properties of the composites and improve their mechanical properties. Through mechanical experiments scanning electron microscopy and differential scanning calorimeter. A series of experiments, such as X-ray diffraction and thermogravimetric analysis, were carried out on BF/PP composites and four kinds of elastomer materials. The comprehensive properties of polypropylene modified by compatibilizer and elastomer were studied, so that it could be better applied in automobile field. The results are as follows: in the polypropylene composites modified by basalt fiber. PP-g-GMA (polypropylene grafted epoxy propyl methacrylate) material was introduced by grafting modification of polypropylene. In order to improve the interfacial properties of the composites and improve the mechanical properties, the results show that:. Compared with pure polypropylene, the mechanical properties of basalt fiber modified polypropylene composites are greatly improved, with the increase of fiber BF content. The overall mechanical properties of the composites were gradually strengthened, and the tensile yield strength increased from 38 MPA to 89 MPA. Especially, the notched impact strength increased from 1.43KJ 路m-2 to 4.53KJ 路m-2.When the fiber content exceeded 30KJ 路m ~ (-2). The mechanical properties of the composites have little change. Through the addition of compatibilizer PP-g-GMA to the composites, the better interfacial adhesion between basalt fiber and polypropylene matrix can be obtained. And when the composite is subjected to load, the ability of absorbing external force is increased, the impact resistance is improved significantly, and the reinforcement of PP composite is realized. The crystallization temperature of pure polypropylene is higher than that of non-doped fiber material, and the crystallization rate increases with the increase of crystallization temperature. Under the two models, the kinetic analysis method and the Mo model are used to calculate the 伪 value and m value, which are relatively constant. The behavior of melting depends on the cooling rate. The slower the cooling rate, the higher the temperature region of crystallization and the longer the nucleation time. The faster the cooling rate, the more imperfect the crystallization, the lower the temperature. XRD diffraction results, with the increase of BF content, there is a 尾 peak, but the diffraction peak diffraction intensity is very low. It is concluded that the addition of compatibilizer and elastomer at the same time has little effect on the crystal form.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ327;TB332
【参考文献】
相关期刊论文 前10条
1 郏j;;汽车内饰件用改性聚丙烯材料表面析出的失效分析及优化[J];汽车工艺与材料;2015年12期
2 毕松梅;朱钦钦;赵X;储彭黄;;玄武岩/聚丙烯复合体系结晶性能的研究[J];产业用纺织品;2013年08期
3 刘红利;谢满存;陆波;张斐斐;郑国强;刘春太;;等规聚丙烯/酸刻蚀无碱玻纤复合材料的界面结晶行为[J];上海塑料;2013年01期
4 应淑妮;周晓东;;嵌段共聚物偶联剂对玄武岩纤维增强聚丙烯复合材料的改性研究[J];塑料科技;2012年05期
5 李英建;李峰;曲英章;金子明;;连续玄武岩纤维增强复合材料的抗弹性能研究[J];工程塑料应用;2011年11期
6 李平;韩琛;汪家宝;;汽车用聚丙烯材料研究进展及应用[J];塑料工业;2011年S1期
7 李卫东;曹海琳;陈国荣;刘毅佳;史鹏飞;;玄武岩纤维/酚醛树脂基复合材料性能研究[J];化学与粘合;2009年06期
8 李全明;肖旋;张梅;邱发贵;张万喜;;连续玄武岩纤维及其复合材料研究进展[J];高科技纤维与应用;2009年05期
9 刘玉美;;连续玄武岩纤维增强环氧树脂基复合材料抗冲击性能研究[J];化工新型材料;2009年04期
10 李锦文;齐风杰;魏化震;李增翼;;特种酚醛树脂基烧蚀复合材料的研究[J];工程塑料应用;2007年08期
相关硕士学位论文 前1条
1 魏斌;玄武岩连续纤维及其混杂复合材料性能评价[D];哈尔滨工业大学;2008年
,本文编号:1381424
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1381424.html