湿热环境下旋转复合材料薄壁梁振动特性研究
发布时间:2018-01-16 15:32
本文关键词:湿热环境下旋转复合材料薄壁梁振动特性研究 出处:《西南交通大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 湿热环境 旋转 倾角 复合材料薄壁梁 Hamilton原理 Galerkin法 振动特性
【摘要】:复合材料薄壁梁具有质量轻、耐高温、强度高等优点,在工程上应用极广,如直升机旋翼、风力机叶片、操作机械臂等。复合材料的各向异性可使梁的不同弹性变形发生耦合,旋转、倾角、湿热等其他因素的作用,更加剧了复合材料薄壁梁动力学行为的复杂性,相应地对其振动特性的研究不但具有重要的理论意义,也具有相当的实用价值。本文的主要工作是研究了湿热、旋转、倾角等外部因素对复合材料薄壁梁拉伸、扭转、弯曲耦合振动的影响,分别为:(1)第1章介绍了本文工作的研究背景和意义,以及复合材料薄壁结构、旋转复合材料结构及湿热环境下复合材料结构在国内外的研究现状,并简要说明了本文的研究内容。(2)第2章建立了复合材料薄壁梁模型,基于经典壳体理论、湿热环境下单层复合材料本构关系和Hamilton原理推导了湿热环境下复合材料薄壁梁的耦合振动控制方程,分别讨论了周向均匀刚度配置(CUS)和周向反对称刚度配置(CAS)两种构型梁的振动耦合情况,并通过数值算例分析了湿度、热度、纤维方向角等因素对复合材料梁振动频率的影响。(3)第3章将旋转引入复合材料薄壁梁模型,研究旋转对复合材料薄壁梁固有频率的影响。首先给出旋转作用下复合梁单位长度的动能和势能表达式,基于Hamilton原理推导了旋转复合材料薄壁梁耦合振动控制方程,与第2章做对比说明旋转对复合梁振动方程及边界条件的影响,根据Galerkin方法得到复合材料梁的特征方程,最后讨论了旋转、旋转与其他因素的联合作用对CUS和CAS两种构型梁振动频率的影响。(4)第4章研究倾角对旋转复合材料薄壁梁振动特性的影响。首先给出带倾角的旋转复合材料薄壁梁的建模方法和耦合振动控制方程,与第3章做对比说明倾角对复合梁振动方程及边界条件的影响。采用数值方法研究了倾角、旋转、纤维方向角等因素对复合材料薄壁梁振动特性的影响规律。
[Abstract]:Composite thin wall beam has the advantages of light weight, high temperature resistance and high strength. It is widely used in engineering, such as helicopter rotor, wind turbine blade. The anisotropy of composite materials can make the different elastic deformation of beams coupled, rotation, inclination, moisture and other factors, which further aggravate the complexity of the dynamic behavior of composite thin-walled beams. The study of vibration characteristics is not only of great theoretical significance, but also of practical value. The main work of this paper is to study the external factors such as moisture and heat, rotation, inclination and other external factors on the tension of composite thin-walled beams. Chapter 1 introduces the research background and significance of this work and the thin-walled composite structure. The research status of rotating composite structure and composite structure in humid and thermal environment is reviewed. The research contents of this paper are briefly described. Chapter 2 establishes the composite thin-walled beam model. Based on the classical shell theory, the constitutive relation of single-layer composite materials and the Hamilton principle, the coupled vibration control equations of composite thin-walled beams under humid and thermal conditions are derived. The vibration coupling of two configurations, CUSS (uniform stiffness configuration) and CAS (antisymmetric stiffness configuration), is discussed, and the humidity and heat are analyzed by numerical examples. Effect of fiber direction angle on vibration frequency of composite beam. Chapter 3 introduces rotation into composite thin-walled beam model. The effect of rotation on the natural frequency of composite thin-walled beam is studied. Firstly, the kinetic energy and potential energy expression of the unit length of composite beam under rotation is given. Based on the Hamilton principle, the coupled vibration control equations of rotating composite thin-walled beams are derived, and the effects of rotation on the vibration equations and boundary conditions of composite beams are illustrated by comparison with Chapter 2. According to the Galerkin method, the characteristic equation of composite beam is obtained, and finally, the rotation is discussed. The effect of the combination of rotation and other factors on the Vibration Frequency of CUS and CAS Beams. In chapter 4, the effect of inclination angle on vibration characteristics of rotating composite thin wall beam is studied. Firstly, the modeling method and coupling vibration control equation of rotating composite thin wall beam with inclination angle are given. The effects of dip angle on vibration equation and boundary condition of composite beam are compared with that in chapter 3. The effects of dip angle, rotation angle and fiber direction angle on vibration characteristics of composite thin-walled beam are studied by numerical method.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33
【参考文献】
相关期刊论文 前4条
1 杨加明,孙良新,吴丽娟,张一龙;湿热环境下复合材料层板的几何非线性分析[J];工程力学;2005年05期
2 马静敏;任勇生;姚文莉;;复合材料变截面旋转薄壁悬臂梁自由振动分析[J];工程力学;2013年01期
3 王元丰,诸德超;复合材料薄壁旋转梁的研究进展[J];力学进展;1996年02期
4 ;Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam[J];Science China(Technological Sciences);2011年03期
,本文编号:1433729
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1433729.html