当前位置:主页 > 科技论文 > 材料论文 >

一维ZnO纳米棒的制备及光学性能研究

发布时间:2018-01-18 06:00

  本文关键词:一维ZnO纳米棒的制备及光学性能研究 出处:《河南科技大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: ZnO纳米棒 溶胶-凝胶 水热 籽晶 ZnO-ZnS 荧光


【摘要】:一维ZnO纳米棒的比表面积较大、电子传输性能优良、光学性能好,在太阳能电池、压电、催化等重要领域很有前景。本文制备了一维ZnO纳米棒并对其ZnS包覆,研究了ZnO纳米棒的物相、形貌与其光学性能之间的关系。本文采用溶胶-凝胶法,以六水硝酸锌和乙二醇单甲醚为主要原料,在Si O2玻璃衬底上旋涂一层致密的ZnO籽晶,用水热法,通过对籽晶层面朝下制备了ZnO纳米棒。然后对ZnO纳米棒硫化,成功制备了具有核壳结构的一维ZnOZnS纳米棒。利用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM),对ZnO纳米棒和ZnO-ZnS核-壳结构的物相、形貌进行检测。并且利用F-280荧光分光光谱仪对其光学性能分析。研究结果表明:1.采用溶胶-凝胶法制备了具有纤锌矿结构的ZnO籽晶层。溶胶浓度是0.25mol/L,热处理温度为450°C,所制备的ZnO籽晶层薄膜比较平整且致密,此条件下晶粒最小可达到20nm左右。每一层ZnO籽晶层薄膜的厚度约为445nm。其光致发光(PL)谱中有两个特别强的发光峰分别位于398nm和469nm。2.采用两步法制备了一维ZnO纳米棒。当生长液浓度为30 mmol/L时,更有利于ZnO纳米棒沿[0001]方向择优生长。此浓度下的平均直径最小约为41nm,长度约为1130nm。所得的样品ZnO纳米棒的PL谱都有两个明显的发光峰,分别是以418nm为中心的宽而强的紫外发光峰和以467nm为中心的相对较弱的蓝光发光峰。并且生长液浓度为30mmol/L样品的可见光发光强度最强。3.通过水热反应法在ZnO纳米棒的表面包覆了一层具有立方闪锌矿结构的ZnS。当硫代乙酰胺的水溶液的浓度为0.1mol/L时,样品保持着纳米棒阵列结构,且纳米棒薄膜表面比较平整;随着硫化浓度提高到0.5mol/L,纳米棒表面的粗糙度增加,表面包覆一层约为10nm厚的ZnS;硫化浓度继续增大到1.0mol/L,有大量的纳米颗粒覆盖整个纳米棒表面。其PL谱中有两个明显的发光峰,分别是以398nm为中心的宽而强的紫外发光峰和以467nm为中心的相对较弱的蓝光发光峰。当硫代乙酰胺的水溶液的浓度为0.5mol/L时,其发光强度最好。ZnS对ZnO纳米棒表面的缺陷具有一定的修饰和钝化作用,从而使ZnOZnS的缺陷发射大大降低。
[Abstract]:One-dimensional ZnO nanorods have large specific surface area, excellent electron transport performance, good optical performance, in solar cells, piezoelectric. In this paper, one-dimensional ZnO nanorods were prepared and coated with ZnS, and the phase of ZnO nanorods was studied. The relationship between morphology and optical properties. In this paper, a dense ZnO seed was spin-coated on Sio _ 2 glass substrate using zinc nitrate hexahydrate and ethylene glycol monomethyl ether as main raw materials by sol-gel method. ZnO nanorods were prepared by hydrothermal method, and then ZnO nanorods were vulcanized. One-dimensional ZnOZnS nanorods with core-shell structure have been successfully prepared by using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ZnO nanorods and ZnO-ZnS core-shell structures. The optical properties were analyzed by F-280 fluorescence spectrometer. The results showed that:. 1. ZnO seed layer with wurtzite structure was prepared by sol-gel method. The sol concentration was 0.25 mol / L. When the heat treatment temperature is 450 掳C, the ZnO seed layer films are smooth and compact. Under these conditions, the minimum grain size can reach about 20nm. The thickness of each layer of ZnO seed layer is about 445nm. There are two particularly strong luminescence peaks at 398nm and 469nm.2. One-dimensional ZnO nanorods were prepared by two-step method when the concentration of growth solution was 30 mmol/L. More favorable to ZnO nanorods. [The average diameter is about 41 nm and the length is about 1 130 nm. The PL spectra of the ZnO nanorods obtained have two obvious luminescence peaks. They are broad and strong UV emission peaks centered at 418 nm and relatively weak blue luminescence peaks centered at 467 nm. The visible luminescence intensity of the growth solution is 30 mmol / L. A layer of ZnS with cubic sphalerite structure was coated on the surface of ZnO nanorods by hydrothermal reaction. When the concentration of thioacetamide in aqueous solution was 0.1 mol / L. The nanorod array structure was maintained and the surface of the nanorod film was flat. With the increase of vulcanization concentration to 0.5 mol / L, the surface roughness of the nanorods increases, and the surface of the nanorods is coated with ZnS about 10 nm thick. The sulfidation concentration continued to increase to 1.0 mol / L, with a large number of nanoparticles covering the whole surface of the nanorods, and there were two obvious luminescence peaks in the PL spectra. It is a wide and strong ultraviolet luminescence peak centered at 398nm and a relatively weak blue luminescence peak centered at 467 nm. When the concentration of thioacetamide aqueous solution is 0.5 mol / L. Its luminescence intensity is the best. ZnS can modify and passivate the defects on the surface of ZnO nanorods to a certain extent, thus greatly reducing the emission of ZnOZnS defects.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O614.241;TB383.1

【参考文献】

相关期刊论文 前10条

1 徐小楠;张秋平;张琴;袁欢;鹿轶红;周攀钒;徐明;;不同煅烧温度对溶胶-凝胶合成的纳米ZnO光催化效果的影响[J];材料导报;2016年02期

2 邓林龙;谢素原;黄荣彬;郑兰荪;;钙钛矿太阳能电池材料和器件的研究进展[J];厦门大学学报(自然科学版);2015年05期

3 DONG YinMao;TANG DongYan;LI ChenSha;;The impact of solvent and modifier on ZnO thin-film transistors fabricated by sol-gel process[J];Science China(Technological Sciences);2014年11期

4 彭文博;贺永宁;赵小龙;刘晗;康雪;文常保;;声表面波ZnO薄膜紫外探测器的响应机制研究[J];压电与声光;2014年01期

5 杜庆波;;水热法制备均一形貌的ZnO微米棒[J];光谱实验室;2013年06期

6 刘鑫;吕伟;吕冰洁;王晓雷;;水热法制备钼掺杂ZnO纳米结构及其光学特性研究[J];发光学报;2013年09期

7 古映莹;李陆柯;张稳稳;刘英;卢周广;;Precipitation processes and luminescence properties of ZnO:La~(3+), Li~+ nanoparticles[J];Journal of Central South University;2013年02期

8 韩龙飞;钱军民;崔宁;;ZnO纳米线的控制生长及在染料敏化太阳能电池中的应用[J];西安交通大学学报;2013年01期

9 ;Electrochemical deposition of nano-structured ZnO on the nanocrystalline TiO_2 film and its characterization[J];Science China(Chemistry);2010年08期

10 艾飞;谭劲;李飞;包鲁明;钟爱华;陈圣昌;;多种ZnO纳米结构和ZnO/ZnS核壳结构的制备[J];液晶与显示;2010年01期

相关硕士学位论文 前5条

1 葛兴;一维纳米材料的制备及其光电特性研究[D];东南大学;2015年

2 杨于民;小尺寸四针状纳米ZnO的制备及其在太阳能电池的应用[D];广西大学;2014年

3 姚树龙;ZnO纳米线阵列的制备及H~+掺杂的影响[D];哈尔滨工业大学;2013年

4 周春红;丝网印刷用纳米ZnO气敏浆料制备研究[D];华中科技大学;2009年

5 袁林;C轴择优取向氧化锌薄膜溶胶—凝胶法制备及性质研究[D];华中科技大学;2008年



本文编号:1439714

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1439714.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1822d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com