SiC粉体表面改性与其在水中分散性能的研究
本文选题:SiC 切入点:表面羟基 出处:《烟台大学》2017年硕士论文
【摘要】:SiC是一种用途十分广泛的无机非金属材料,直接凝固注模成型是制备高性能SiC材料的最简捷有效的方法。该方法克服了以往热压成型工艺过程中耗能高、后期机加工复杂、成本昂贵等缺点,但直接凝固注模对SiC粉体浆料提出了苛刻的要求,要求Si C粉体浆料粘度低于1pa.s时,固相体积分数达到50vol%以上。目前国内工业产品高质量SiC水基浆料也远无法达到该性能指标。本文对SiC粉体通过酸碱溶液洗涤、加碱热处理、表面羟基接枝进行表面改性,通过测量改性后的SiC粉体表面Si-OH含量、表面元素变化及表面形貌变化,测量水基浆料粘度与固含量,以期制备高固含量低粘度的SiC水基浆料并探究其机理。1、首次使用卡尔-费休法测量SiC粉体表面的Si-OH含量。对比以往表面Si-OH测量方法,该方法RSD值仅为3.8%,其他方法一般超过5%。该方法具有精密度高,易克服外界干扰因素等优点,是测量粉体表面Si-OH的一种有效的方法。对平均粒径约为0.5μm的国产SiC粉体利用不同酸碱溶液进行表面清洗后,测量酸溶液处理导致Si C粉体表面硅羟基浓度增大,在2mol/L HCl处理后,羟基含量升至最高值0.18%,较原料含量上升28%。碱溶液处理导致SiC粉体表面羟基浓度降低,降低至0.11%,较原料含量下降约21%。表面元素分析显示,表面酸碱洗涤均会降低SiC粉体表面碳硅比。结果显示2mol/L HCl处理后变化最为明显,表面C元素含量下降29%,表面Si元素含量升高44.1%。表面碳硅比由原料的80.4/19.6变为57.34/42.66。固定固含量为10.7%,酸碱处理过SiC粉体浆料粘度均低于原料SiC粉体浆料粘度。在pH值约为8的环境中,NaOH处理过的SiC粉体浆料粘度最低为1.41mpa.s,远小于原料粉体浆料的粘度。结果显示酸碱处理均会改善SiC粉体水基浆料分散性。酸处理有效改善SiC粉体表面元素含量,利于SiC粉体浆料分散。碱处理有效减少SiC粉体表面羟基含量,从而提高SiC粉体浆料分散性。测量相同质量分数下的SiC浆料粘度来评价酸碱处理对SiC粉体浆料的影响,得出碱溶液处理最能导致SiC粉体分散性变优的结论。2、探究加碱加热处理Si C粉体表面改性效果的研究,固定SiC与NaOH质量比,结果显示改变加热温度会引起表面形貌变化,照片显示200-250℃会最显著引起SiC粉体颗粒棱角钝化。250℃下pH值约为13的溶液中分散性最好,质量分数为50%,粘度值仅为35.6mpa.s,而原料SiC粉体浆料粘度为905mpa.s。加热温度改变还会引起SiC粉体表面元素比变化,有效去除表面多余的C元素。改变加碱热处理表面改性碱浓度会引起SiC粉体表面O元素含量降低,SiC与NaOH质量比为1/0.5时,表面氧元素含量降至最低,约为1.08%,约降至原料水平的42%。SiC与NaOH质量比变化会引起表面羟基浓度变化,SiC与NaOH质量比为1/0.5时,SiC粉体表面硅羟基浓度降至0.05%,较原料下降约45%。加碱加热表面改性会显著影响SiC粉体表面羟基浓度,表面氧元素含量,表面碳硅比,最终通过加碱热处理改性,可有效改善SiC粉体浆料分散性。3、无水条件下对SiC粉体表面羟基与二元羧酸的反应进行表面接枝改性,通过原料SiC粉体和加碱加热改性后SiC粉体分别与乙二酸接枝,分别制备得到粘度1pa.s下,固含量分别为46vol%、41vol%的浆料。结果显示直接用原料接枝可以制备效果更好的浆料。对SiC粉体与乙二酸接枝制备得到粘度1pa.s,固含量达到46vol%的浆料。通过SiC粉体与丙二酸接枝制备得到粘度为1pa.s,固含量达到52vol%的浆料。通过对SiC粉体与丁二酸接枝制备得到粘度1pa.s,固含量达到45vol%的浆料。通过对SiC粉体与己二酸接枝制备得到粘度1pa.s,固含量达到46.2vol%的浆料。通过对SiC粉体与庚二酸接枝制备得到粘度1pa.s,固含量达到42vol%的浆料。通过对电位滴定法测量得到乙二酸、丙二酸、丁二酸、己二酸、庚二酸接枝率分别为9.11%,15.18%,5.49%,23.7%,14.58%,结合探究水基浆料在不同pH值水基分散介质中的pH值,评价得到改性后Si C粉体浆料流动性最佳者为接枝丙二酸,改性后粉体在TMAH调节pH=13分散介质中固相体积分数可达52vol%,已经初步可以达到注模成型的基本要求。本文通过电位滴定定量分析接枝率,接枝率数据的得出有力证明接枝反应的发生,同时从侧面验证了表面Si-OH的存在和表面Si-OH的反应活性。
[Abstract]:SiC is a non-metallic material widely used inorganic, direct coagulation casting is the most simple and effective way of preparing high performance SiC materials. The method overcomes the disadvantages of high energy consumption in hot forming process, complex post machining, disadvantages of high cost, but the direct coagulation casting of SiC powder the slurry demanding requirements, Si C powder slurry viscosity is less than 1pa.s, the solid volume fraction is more than 50vol%. The current domestic industrial products of high quality SiC slurry is far unable to meet the performance index. The SiC powder by alkali solution washing, alkali heat treatment, surface hydroxyl groups grafted on surface modification by measuring the change of the content of Si-OH on the surface of SiC powder after the change of surface elements and the surface morphology, measurement of slurry viscosity and solid content, in order to SiC water-based slurry for preparing high solid content and low viscosity, and explore The mechanism of.1, Carle - Si-OH content measurement fee Hugh surface of SiC powder used for the first time. In contrast to the conventional surface Si-OH measurement method, the method of RSD value is only 3.8%, other than 5%. method this method has the advantages of high precision, easy to overcome the external interference factors, is an effective method for Si-OH surface measurement powder. The average particle size is about 0.5 m domestic SiC powder by cleaning the surface of different acid solution after acid treatment resulted in Si measurement of C powder surface silanol concentration increased at 2mol/L after HCl treatment, hydroxyl content rose to the highest value of 0.18%, compared with the raw material increased the content of 28%. alkaline solution treatment result SiC powder surface hydroxyl concentration decreased, decreased to 0.11%, compared with the raw material content decreased about 21%. surface element analysis showed that the surface of acid alkali washing will reduce SiC powder surface carbon silicon ratio. The results showed that 2mol/L HCl treatment after the most obvious change, table C element content decreased 29%, the content of Si is higher than that of the surface by raw material 80.4/19.6 into 57.34/42.66. fixed solid content is 10.7% 44.1%. the surface of silicon carbon, acid treated SiC powder slurry viscosity was lower than that of SiC powder material slurry viscosity. The pH value is about 8 of the environment, NaOH treated SiC powder the viscosity of the slurry for a minimum of 1.41mpa.s, far less than the raw powder slurry viscosity. The results showed that acid treatment will improve SiC powder slurry dispersion. Acid treatment can effectively improve the surface element content of SiC powder, SiC powder for slurry. The alkali treatment can effectively reduce SiC powder surface hydroxyl content, so as to improve the dispersion of SiC the SiC powder slurry. The slurry viscosity measurement of the same mass fraction to evaluate the effect of acid treatment on SiC powder slurry, the alkaline solution treatment can lead to the most SiC powder dispersion became excellent conclusion.2, explore alkali heat treatment of Si Study on C powder surface modification effect, fixed SiC and NaOH mass ratio, results show that changing the heating temperature will cause the change of the surface morphology, photo shows 200-250 degrees will most significantly induced SiC powder passivation of edges.250 DEG pH value is about 13 of the best dispersion solution, mass fraction is 50%, viscosity the value is only 35.6mpa.s, and SiC powder material slurry viscosity of 905mpa.s. heating temperature change will cause the surface of SiC powder element ratio change, effectively remove excess surface elements C. Change the alkali heat treatment of surface modification of alkali concentration will cause the surface of SiC powder O element content decreased, SiC and NaOH ratio of 1/0.5 when the surface oxygen content to a minimum, about 1.08%, about the level of 42%.SiC and NaOH to the raw material quality will cause the surface hydroxyl concentration ratio, SiC and NaOH mass ratio was 1/0.5, SiC powder surface silanol concentration decreased to 0.05%, compared with the original The material decreased about 45%. alkali heating surface modification of SiC powder surface hydroxyl concentration will significantly influence the surface, oxygen content, surface carbon and silicon ratio, eventually modified by alkali heat treatment, can effectively improve the dispersion of.3 SiC powders, surface modification reaction of hydroxy SiC powder surface and two yuan carboxylic acid under anhydrous conditions, by raw material SiC powder and alkali heating modified SiC powder and oxalic acid were prepared by grafting, 1pa.s viscosity, solid content were 46vol%, 41vol% of the slurry. The results showed that the direct use of raw materials can be grafted slurry preparation better. On SiC powder. With oxalic acid was prepared by grafting 1pa.s viscosity, solid content of 46vol% slurry. By SiC powder and malonic acid was prepared by grafting viscosity 1pa.s, solid content of 52vol% slurry. By SiC powder and succinic acid was prepared by grafting the viscosity of 1pa.s, solid content The amount of up to 45vol%. The SiC powder slurry and adipic acid was prepared by grafting the viscosity of 1pa.s, solid content of 46.2vol% slurry. By SiC powder and Pimelic acid was prepared by grafting the viscosity of 1pa.s, solid content of 42vol% slurry. By potentiometric titration measured B two malonic acid, succinic acid. Succinic acid, adipic acid, Pimelic acid grafting rate were 9.11%, 15.18%, 5.49%, 23.7%, 14.58%, combined with the research of water-based slurry in different pH aqueous dispersion medium pH value, the evaluation of modified Si C powder slurry fluidity for the best grafting malonic acid modified powder in TMAH regulation of pH=13 the dispersion medium in the solid volume fraction is 52vol%, has been initially can meet the basic requirements of injection molding. This paper by potentiometric titration quantitative analysis of grafting ratio, grafting rate data obtained strong evidence of reaction, and verified from the side table The presence of the surface Si-OH and the reactive activity of the surface Si-OH.
【学位授予单位】:烟台大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ163.4;TB383.3
【参考文献】
相关期刊论文 前10条
1 铁健;铁生年;;微波酸碱处理微纳米碳化硅粉体杂质去除工艺研究[J];人工晶体学报;2016年09期
2 王永明;毕文娟;李家柱;殷军港;;酸碱处理对SiC粉体表面性质的影响研究[J];硅酸盐通报;2016年05期
3 赵鹏;陈爱城;戴勇;关怀民;童跃进;;二氧化硅表面硅羟基含量的测定方法[J];广州化工;2016年02期
4 周小英;;硅微粉的湿氧化损耗和表面钝化保护研究[J];化学世界;2015年04期
5 赵娟;宋丽岑;王瑞雨;高原;刘惠涛;;SiC粉体预处理对浆料流变性能的影响[J];硅酸盐通报;2014年11期
6 黄增芳;瞿晓岳;马军现;;乳液聚合制备SiO_2/PMMA-DMEMA亚微米复合微球及其表征[J];高分子材料科学与工程;2014年01期
7 刘亚虎;蔡雪原;朱延超;张琳娇;杨建红;;纳米碳化硅颗粒的团聚及分散的研究进展[J];材料工程;2013年09期
8 宋丽岑;潘燕飞;刘惠涛;高原;;SiC粉体的微观差异性及其浆料的流变性质[J];中国粉体技术;2013年02期
9 肖勇;吴孟强;袁颖;庞翔;陈黎;;无机微/纳米粒子表面包覆改性技术[J];电子元件与材料;2011年09期
10 王海波;;SiC表面的氢等离子体处理技术[J];黑龙江科技信息;2011年23期
相关会议论文 前2条
1 马建军;谭奥严;吴澜尔;;固体碳源在碳化硅浆料中的分散[A];中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集(上)[C];2008年
2 李卫红;周细应;徐洲;周细应;;纳米颗粒的分散稳定性及其评估方法[A];第十五届华东地区热处理年会暨华东地区热处理年会三十周年纪念活动论文摘要集[C];2006年
相关硕士学位论文 前9条
1 赵娟;碳化硅粉体表面处理方法及其浆料流变性研究[D];烟台大学;2016年
2 茆福炜;SiC微粉提纯工艺研究[D];苏州大学;2014年
3 李世娟;SiC表面碳团簇及其钝化的第一性原理研究[D];大连理工大学;2014年
4 宋丽岑;高固含量低粘度碳化硅稳定浆料的制备及流变特性研究[D];烟台大学;2014年
5 温源;SiC表面钝化的第一性原理热力学研究[D];大连理工大学;2013年
6 杨亮亮;超细二氧化硅表面接枝超支化聚合物研究[D];武汉工程大学;2012年
7 李星;半导体制造用高纯超细碳化硅陶瓷粉体表面改性研究[D];青海大学;2011年
8 柒祥芝;二氧化钛表面接枝改性及其复合材料的研究[D];华东理工大学;2011年
9 李欢欢;高性能碳化硅的成型及烧结工艺研究[D];北京交通大学;2009年
,本文编号:1657177
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1657177.html