铜基纳米结构阵列材料的设计、制备及性能研究
发布时间:2018-04-01 08:09
本文选题:CuO/MnO_2 切入点:Cu_2O 出处:《合肥工业大学》2015年硕士论文
【摘要】:鉴于纳米结构阵列材料相比于无序堆积的纳米粉体材料具有比表面积高、活性位点多、电荷传输能力强的特性,作为催化剂和锂离子电池电极材料均可表现更加优异的性能。本文设计实验方案,以生长在铜箔上的Cu(OH)2纳米棒阵列为模板,分别采用化学浸渍法、液相还原法和金属基底诱导热还原法制备了CuO/MnO2、CuO/Cu2O复合纳米棒结构阵列和Cu20纳米棒结构阵列,并分别研究了它们在催化降解染料废水和锂离子电池中的应用,主要研究内容总结如下:1.以生长在铜箔上的Cu(OH)2纳米棒阵列为模板,Mn(NO3)2溶液为锰源,通过化学浸渍法和后期焙烧制备CuO/MnO2纳米结构阵列,并将其作为催化剂催化H2O2氧化降解酸性品红(AF)溶液,研究AF溶液初始浓度、H202用量对催化性能的影响,结果发现当AF浓度为20mg/L,H2O2用量为0.05 mL时,CuO/MnO2催化剂的催化性能最佳;同时制备CuO纳米棒阵列催化剂和粉末状MnO2纳米棒催化剂,比较相同条件下三种催化剂对AF溶液的催化降解性能,其降解率分别为:94.05%、72.5%、79.6%,说明CuO/MnO2纳米棒阵列催化剂对催化H2O2氧化降解AF染料效果最为优异;探究CuO/MnO2纳米棒阵列催化剂的稳定性和循环使用性能,结果显示同一片CuO/MnO2催化剂经过10次重复利用后,AF溶液的降解率没有明显的变化(首次:94.05%,第10次:90.28%),并且CuO/MnO2催化剂在放大约6倍的染料体系中仍然具有较好的催化性能,说明CuO/Mn02纳米棒阵列催化剂具有良好的应用前景。2.以生长在铜箔上的Cu(OH)2纳米棒阵列为模板,抗坏血酸和NaBH4为还原剂,分别在30℃水浴加热和0-5℃低温条件下,通过“液相还原”和后期热处理得到CuO/Cu2O复合纳米棒结构阵列;并将其作为光催化剂,研究其在可见光条件下对刚果红溶液(CR)的光催化降解性能。结果发现当CR浓度为30 ppm时,CuO/Cu2O催化剂对刚果红溶液的光催化降解率可达93.81%;同时制备CuO纳米棒阵列催化剂和Cu20纳米球薄膜催化剂,比较相同条件下三种催化剂对CR溶液的可见光催化降解性能,其降解率分别为:93.81%、64.28%、48.29%,说明将Cu20负载到具有纳米棒阵列结构的CuO表面可显著提高其对CR溶液的可见光催化降解性能。3.以生长在铜箔上的Cu(OH)2纳米棒阵列为模板,通过金属基底诱导热还原法制备Cu20纳米棒结构阵列,并将其作为锂离子电池负极材料,研究其充放电性能、循环性能及倍率性能,结果表明:Cu20纳米棒结构阵列薄膜具有很好的循环性能和倍率性能,在1.0 C下经过200次循环后放电比容量为358 mAhg-1,在10C下其放电比容量仍然有315 mAh g-1;电化学交流阻抗谱的测试发现Cu20纳米棒结构阵列的电荷迁移电阻仅为59.2Ω,说明Cu20纳米棒结构阵列薄膜具有更高的电子传输能力;同时,设置对比实验研究Cu20纳米棒结构阵列的形成机理,结果发现单质Cu的引入改变了反应吉布斯自由能变从而显著降低了Cu(OH)2到Cu20的相转变温度。
[Abstract]:In view of the fact that nanostructured array materials have higher specific surface area, more active sites and stronger charge transport ability than those of disordered stacked nano-powder materials, As catalysts and electrode materials for lithium ion batteries, the experimental scheme was designed. The Cu(OH)2 nanorod arrays grown on copper foil were used as templates, respectively, by chemical impregnation. Cuo / MnO2CuO / CuO / CuO / CuO / Cu2O nanorod arrays and Cu20 nanorods arrays were prepared by liquid phase reduction and metal substrate induced thermal reduction. Their applications in catalytic degradation of dye wastewater and lithium ion batteries were studied. The main research contents are summarized as follows: 1. The Cu(OH)2 nanorod arrays grown on copper foil were used as template and manganese source. CuO/MnO2 nanostructures were prepared by chemical impregnation and later calcination. The effect of the initial concentration of AF solution on the catalytic performance was studied. The results showed that the best catalytic performance was obtained when the concentration of AF was 20mg / L H _ 2O _ 2 and the dosage of H _ 2O _ 2 was 0.05ml. CuO nanorods array catalysts and powdered MnO2 nanorods catalysts were prepared at the same time. The catalytic degradation properties of three kinds of catalysts for AF solution were compared under the same conditions. The degradation rates of CuO/MnO2 nanorods were 72.5% and 79.6% respectively, which showed that the CuO/MnO2 nanorod array catalyst was the most effective catalyst for the oxidation and degradation of AF dyes by H2O2, and the stability and recycling performance of CuO/MnO2 nanorod array catalysts were investigated. The results showed that there was no significant change in the degradation rate of the same CuO/MnO2 catalyst after 10 reuses (the first time was 94.05, the tenth was 90.280.28%), and the CuO/MnO2 catalyst still had good catalytic performance in the dye system of about 6 times magnification. The results show that the CuO/Mn02 nanorod array catalyst has a good application prospect. (2) the Cu(OH)2 nanorod array grown on copper foil is used as template, ascorbic acid and NaBH4 are used as reducing agents, and heated in water bath at 30 鈩,
本文编号:1694677
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1694677.html
最近更新
教材专著