基于纳米粒子提高有机发光器件性能的研究
本文选题:有机电致发光二极管 切入点:纳米粒子 出处:《苏州大学》2015年硕士论文
【摘要】:由于有机电致发光二极管(OLED)具有主动发光、宽视角、高效率,高响应灵敏度、可制作大尺寸与柔性面板等诸多优点,使其已成为当前光电器件领域一大研究热点。近年来,虽然基于磷光材料制备的OLED内量子效率可达到100%,但是由于内部各个功能层折射率的不匹配等造成了器件的外量子效率不理想。表面等离子(SPP)技术,被广泛应用于有机电致发光器件的研究中用来提高器件的发光效率。与此同时,通过在器件中引入纳米粒子实现对光的散射进而改变光子在器件中的运动路径,也是调控OLED发光效率的一种有效手段。本论文制备了单一结构的金属纳米颗粒和复合结构的纳米粒子,并将其掺杂在电极缓冲层中,通过优化掺杂缓冲层的厚度和纳米材料的浓度,在实现了界面修饰和基于纳米粒子的SPP效应增强内量子效率的同时,也实现了基于纳米结构散射效应增强的器件光取出效率研究。具体工作及效果如下:1.利用溶液法制备器件的电极缓冲层氧化钼溶液,将金纳米粒子掺杂在氧化钼溶液中并优化掺杂浓度,最终引入到器件中作为器件的电极缓冲层,制备的器件结构如下:Glass/ITO/MoOx:Au NPs/NPB/Alq3/LiF/Al,利用氧化钼的高功函数特性和金纳米粒子的表面等离子体特性,降低了器件的驱动电压、进而提高了器件的发光效率和稳定性。2.区别于我们的前期工作基础,即采用四氧化三铁参杂空穴传输层实现了器件驱动电压的降低和发光性能的改善。在此,综合四氧化三铁和金纳米粒子两者的特性,我们进一步采用静电吸附的方法制备了金纳米粒子包裹的四氧化三铁纳米粒子,即Fe3O4@Au的复合纳米粒子。将复合纳米粒子掺杂到PEDOT:PSS空穴缓冲层中,实现基于金纳米粒子的SPP和复合纳米结构的光散射效应双重调控的有机电致发光二极管,使得器件的效率提高了近一倍。总之,我们研究了不同纳米材料掺杂电极缓冲层材料对器件性能的影响,并改变掺杂浓度和优化掺杂层参数来实现对器件性能调控。最后综合不同纳米材料的特性,将其特性集成于复合纳米结构一体,在实现较好的电极界面能级匹配的同时,还实现了器件内、外量子效率的显著增强,使得器件效率实现高达一倍的提高,为获得高效率低成本OLED器件的研究提供一定的工艺优化基础。
[Abstract]:Due to its advantages of active luminescence, wide viewing angle, high efficiency, high response sensitivity and the ability to fabricate large size and flexible panels, OLED has become a research hotspot in the field of optoelectronic devices.In recent years, although the quantum efficiency of OLED based on phosphorescent material can reach 100, the external quantum efficiency of the device is not ideal due to the mismatch of refractive index of each functional layer inside the device.Surface plasma spp (SPP) technology has been widely used to improve the luminescence efficiency of organic electroluminescent devices.At the same time, it is an effective method to control the luminescence efficiency of OLED by introducing nano-particles into the device to achieve light scattering and then changing the photon path in the device.In this paper, metal nanoparticles with single structure and nano-particles with composite structure were prepared and doped into the electrode buffer layer. The thickness of the doped buffer layer and the concentration of nano-materials were optimized.The interfacial modification and the SPP effect based on nanoparticles are used to enhance the internal quantum efficiency, and the optical extraction efficiency of the devices is also studied based on the enhancement of the scattering effect of nanostructures.The specific work and effect are as follows: 1.The electrode buffer layer molybdenum oxide solution was prepared by the solution method. The gold nanoparticles were doped in the molybdenum oxide solution and the doping concentration was optimized. Finally, the gold nanoparticles were introduced into the device as the electrode buffer layer.The structure of the device is as follows: Glass-IT / MoOxw: au NPsNPB / NPB / Alq3 / LiF / Al.The high power function characteristic of molybdenum oxide and the surface plasma characteristic of gold nanoparticles can reduce the driving voltage of the device and improve the luminescence efficiency and stability of the device.Different from our previous work, the device driving voltage is reduced and the luminescence performance is improved by using the ferric oxide impurity hole transport layer.In this paper, based on the characteristics of iron trioxide and gold nanoparticles, the gold nanoparticles coated with gold nanoparticles, Fe3O4@Au composite nanoparticles, were prepared by electrostatic adsorption.The composite nanoparticles are doped into the PEDOT:PSS hole buffer layer to realize the double regulation of the light scattering effect of the SPP based on gold nanoparticles and the light scattering effect of the composite nanostructures. The efficiency of the devices is nearly doubled.In a word, we studied the effect of buffer layer materials of different nano-materials on the device performance, and changed the doping concentration and optimized the doping layer parameters to achieve the device performance control.Finally, the properties of different nanomaterials are synthesized and integrated into the composite nanostructures. At the same time, the quantum efficiency inside and outside the devices is greatly enhanced while the electrode interface energy levels are matched well.The efficiency of the device can be doubled and the process optimization is provided for the research of high efficiency and low cost OLED devices.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN383.1;TB383.1
【相似文献】
相关期刊论文 前10条
1 牟方志;官建国;樊希安;王维;童国秀;李维;;四氧化三铁中空/螺旋纤维的制备及形成机理[J];高等学校化学学报;2008年09期
2 马传国;逯伟;郑海军;王亚珍;罗炎;;碳/四氧化三铁纳米复合材料合成研究[J];无机盐工业;2009年04期
3 詹艳慧;林建伟;王虹;王昕睿;黄娜;欧阳丹;;四氧化三铁-沸石复合材料去除水中铵和磷酸盐研究[J];上海海洋大学学报;2013年03期
4 陶印章;;氧化溶液的控制和工艺选择[J];包装工程;1980年04期
5 陶印章;氧化溶液的控制和工艺选择[J];防腐包装;1980年04期
6 林凡;;快速除锈剂[J];机械制造;1990年11期
7 郑兰香,彭国新;超细四氧化三铁微粒的制备[J];精细化工;1995年06期
8 刘全民;蒋训雄;贾成科;;超细四氧化三铁氧化合成与磁性能研究[J];有色金属(冶炼部分);2014年08期
9 苏莉;用硫铁矿烧渣制取四氧化三铁超细粉体的研究[J];贵州工业大学学报(自然科学版);2003年06期
10 崔升,沈晓冬,林本兰;四氧化三铁纳米粉的制备方法及应用[J];无机盐工业;2005年02期
相关会议论文 前10条
1 胡鸣;姜继森;;特殊型貌四氧化三铁粉体的制备研究[A];中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会论文集[C];2010年
2 昂正同;;浅述四氧化三铁的生成和控制措施[A];2002年全国铜冶炼生产技术及产品应用学术交流会论文集[C];2002年
3 王国斌;肖勇;陶凯雄;张力;李剑星;夏泽锋;刘劲伟;;纳米级四氧化三铁的药代动力学和组织分布研究[A];武汉市首届学术年会论文集[C];2004年
4 张玲;贺蓉;古宏晨;;种子介导方法合成尺寸可控的四氧化三铁纳米颗粒[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
5 柯佳含;王征科;李aU,
本文编号:1713164
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1713164.html