化学气相沉积氮化硼薄膜的工艺、结构和性能研究
发布时间:2018-04-08 19:21
本文选题:氮化硼 切入点:薄膜 出处:《国防科学技术大学》2015年博士论文
【摘要】:氮化硼薄膜是一种类石墨烯蜂巢晶格结构的薄膜,由交替的硼原子和氮原子组成。氮化硼薄膜继承了氮化硼块体材料的力学、电学、热学和光学方面的优异性能,并且由于其特殊的二维结构,使其拥有更多的特性和更广泛的应用前景。氮化硼薄膜目前尚处于基础研究阶段,其制备方法尚不成熟。本文在综述氮化硼薄膜制备工艺的基础上,采用化学气相沉积(CVD)工艺,以硼吖嗪(Borazine)为氮化硼先驱体,以Ni、Cu和碳材料为衬底,成功制备出结晶度高、尺寸大并且厚度均匀的氮化硼薄膜。本文提出了Ni衬底表面氮化硼薄膜的制备和层数控制方法;研究了Cu衬底表面氮化硼单晶长大和薄膜生长的规律,并制备出最大尺寸约20μm的氮化硼单晶;在石墨烯和碳气凝胶表面制备了氮化硼薄膜,并通过工艺控制,制备出超轻氮化硼气凝胶,该氮化硼气凝胶实际为三维结构的氮化硼薄膜;研究了氮化硼薄膜的光学、电学以及抗氧化特性。采用CVD工艺,在镍衬底表面制备了厚度为数原子层的连续氮化硼薄膜。研究了不同CVD温度、时间、稀释气等工艺参数对氮化硼薄膜的影响,实现了氮化硼薄膜的层数控制,总结出薄膜的层数控制机理。Ni衬底表面氮化硼薄膜制备优化的CVD工艺条件是:温度1000℃、常压、生长时间15 min、稀释气为Ar/H_2混合气、Borazine/H_2/Ar的比例为2:45:225。通过工艺控制,可以实现薄膜原子层数在2到10层以上变化,层间间距均为0.34±0.01 nm。氮化硼薄膜生长过程中同时存在外延生长和扩散偏析两种机制,薄膜的最终厚度是两种机制共同控制的结果。在CVD过程(外延生长过程),氮化硼薄膜在镍表面外延生长,同时,B和N原子向镍衬底或其晶界中溶解;在降温冷却过程中(扩散偏析过程),镍衬底中的B和N原子受到衬底冷却收缩的挤压作用,偏析至衬底表面形成新增的的氮化硼原子层。CVD时间的延长对薄膜厚度的影响,体现了薄膜的外延生长机制,而CVD结束后降温速率对氮化硼薄膜厚度的影响,则体现了氮化硼薄膜的扩散偏析机制。随着冷却速率的提升,氮化硼薄膜的厚度升高,但是厚度均匀性下降。采用Ni/Si复合衬底,高温下硅原子和镍原子在界面处发生反应形成镍硅化合物阻挡层,阻止B和N原子在Ni衬底的溶解和扩散,保证氮化硼薄膜直接在Ni表面的外延生长,即可在Ni表面制备出单原子层连续的氮化硼薄膜。采用CVD工艺,在铜表面制备了单原子层的连续氮化硼薄膜和大尺寸氮化硼单晶。研究了不同CVD温度、时间、气体条件和衬底状态等工艺参数对氮化硼薄膜的影响。铜衬底表面氮化硼单晶和薄膜制备优化的CVD工艺条件是:抛光铜衬底、生长温度1000℃、低压、稀释气为Ar/H_2混合气、Borazine/H_2/Ar的比例为1:180:270。1000℃制备的氮化硼单晶,具有正三角形形貌,最大尺寸约20μm。依据化学热力学,对于高温下的铜表面的氮化硼薄膜,以B原子终结的边界不稳定,而N原子终结的边界则可以稳定存在,因此氮化硼薄膜倾向于呈现正三角形形貌。铜表面的氮化硼薄膜生长为外延生长,延长CVD时间(15~60 min),可以观察到氮化硼从形核到单晶畴长大并最终制备连续薄膜的过程。由于Borazine的分解副产物为氢气,考虑到化学平衡的影响,采用Ar/H_2混合气体作为反应稀释气,可以制备出质量较好的氮化硼单晶和薄膜。氢气的存在对氮化硼薄膜和单晶存在刻蚀和修饰的作用,有助于氮化硼单晶的正三角形形貌的形成。铜衬底的抛光和富氧化等表面状态,对氮化硼产物的生长有较大影响。采用CVD工艺,在石墨烯衬底上制备了氮化硼薄膜,研究了CVD温度、时间对氮化硼薄膜的影响。900℃是在石墨烯表面制备氮化硼晶畴的优化温度。石墨烯表面氮化硼晶畴的生长可以分为三个过程,即吸附过程、成核过程和晶畴生长过程。在较高的温度下,当氮化硼单元或自由基的动能过大,其在衬底表面的吸附进程受到抑制,解吸附占主导作用,进而导致晶畴的成核密度降低;在较低温度下,结果反之。石墨烯为原子级超平整衬底,对氮化硼的生长无催化作用,通过延长CVD时间,在CVD初期,持续存在着氮化硼晶畴的吸附、成核和晶畴长大过程;在CVD后期,氮化硼晶畴覆盖率达到一定比例后,很难在未覆盖衬底区域实现吸附、成核和晶畴生长的连续过程,沿着旧的成核中心垂直方向生长将占主导地位,最终导致难以制备连续薄膜。采用模板辅助CVD法,以碳气凝胶为模板在900℃制备了氮化硼薄膜,进而采用600℃高温氧化法除去碳气凝胶模板,获取氮化硼气凝胶。该氮化硼气凝胶实际为特殊三维结构的氮化硼薄膜。氮化硼气凝胶晶格结构与碳材料相似,但结晶度略低于碳气凝胶,因为碳衬底对薄膜的生长无催化作用。在CVD时间30 min成功制备出体积密度为0.6 mg/cm~3的超轻氮化硼气凝胶,该密度远低于空气的体积密度(1.29 mg/cm~3)。氮化硼气凝胶的比表面积可达1051 m~2/g。研究了氮化硼薄膜的光学、电学以及抗氧化特性能。氮化硼薄膜在可见光区拥有良好的透光性,但在深紫外光区203.0 nm处具有强力吸收峰。单原子层氮化硼薄膜拥有6.05±0.03 e V的光学带隙。制备了电阻器件,并采用四端子法测试了转移到Si O2/Si表面的氮化硼薄膜的电阻。氮化硼薄膜拥有良好的绝缘特性,无明显掺杂情况,品质较高。氮化硼薄膜的抗氧化温度上限为800℃,800℃以上温度氧化后的氮化硼薄膜的Raman光谱的E2g特征峰强度开始减弱,频率变高,并且半高宽变大,该结果分别归因于氧化导致的氧元素掺杂和氮化硼薄膜晶格无序化。氮化硼气凝胶具备远超碳气凝胶的抗氧化性能,其开始氧化的温度为800℃,氧化过程同时包含BN的氧化和B_2O_3的升华两个变化,热重分析结果显示,即使氧化温度达到1300℃,氮化硼气凝胶的重量保留率仍超过60%。氮化硼气凝胶为一种有选择的吸附剂,其表面呈现超疏水性,但是对有机物(油)拥有较好的吸收性。氮化硼气凝胶可以吸收自身重量160倍的有机物。采用直接空气中点燃的方法,对吸油后的气凝胶进行复原,复原后的气凝胶拥有与原始气凝胶相等的有机物吸附性能。本文实现了氮化硼薄膜的原子层数可控,并制备了大尺寸的三角形氮化硼单晶,以及超轻的氮化硼气凝胶。下一步,将探索氮化硼薄膜在微电子器件尤其是石墨烯器件上的具体应用,并制备更大尺寸的的氮化硼气凝胶,以探索氮化硼气凝胶的进一步应用。
[Abstract]:......
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TQ128;TB383.2
【相似文献】
相关期刊论文 前10条
1 黄志群,高桂复,索艳丽,刘翠云;氮化硼生产工艺的改进[J];润滑与密封;1984年04期
2 司徒杰生;;氮化硼的合成方法[J];无机盐工业;1987年01期
3 ;微细氮化硼研制成功[J];辽宁化工;1990年05期
4 王运峰,林静春;氮化硼的生产方法[J];河南科技;1994年06期
5 赖泽锋;高志增;廉刚;李凯;景海鹏;崔得良;赵显;陶绪堂;;利用水热合成方法制备正交氮化硼微晶[J];高等学校化学学报;2008年05期
6 朱玲玲;谭淼;王康;廉刚;王琪珑;崔得良;陶绪堂;;纳米氮化硼在吡啶热条件下的物相转变规律[J];化学学报;2009年09期
7 刘栋;唐成春;薛彦明;李杰;;新型多孔氮化硼材料[J];化学进展;2013年07期
8 刘孝定;;烧结氮化硼[J];陶瓷;1976年03期
9 杨世平;热解氮化硼与各种金属间的摩擦和物质转移特性[J];机械工程材料;1980年04期
10 钮因健;;氮化硼薄膜的合成[J];稀有金属;1985年05期
相关会议论文 前10条
1 ,
本文编号:1723017
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1723017.html
最近更新
教材专著