同轴静电纺丝制备聚环氧乙烷—聚丙烯酸核—壳纳米纤维
本文选题:同轴静电纺丝技术 + 核-壳纳米纤维 ; 参考:《东华大学》2017年硕士论文
【摘要】:氢键是一种比离子键、配位键等化学键弱的多的相互作用,但却在改善聚合物相容性、提高复合物的稳定性、显著改善化合物的物理特性和结晶结构等方面起着非常重要的作用。而氢键既可以在本体中形成,也可以在各种界面上形成。目前,氢键在界面上形成的主要研究是利用氢键做为层层自组装技术的驱动力制备界面氢键复合膜,但是关于在界面上形成氢键的复合纤维的文章却鲜有报道。这主要是因为制备界面氢键复合纤维操作困难,而且纤维尺寸不可控。同轴静电纺丝为制备在界面上形成氢键的核-壳复合纤维提供了一个简单有效的方法。本文以聚环氧乙烷(PEO)作为氢键受体,聚丙烯酸(PAA)作为氢键供体,因为PEO可与PAA可形成构象较为伸展、流体力学体积较大PEO/PAA氢键复合物。首先,我们分别纺制了不同浓度,不同电压下的PEO和PAA纳米纤维膜,探究了聚合物溶液性质,纺丝工艺和环境对纤维形貌的影响,为制备核-壳纳米纤维奠定一定的实验基础。并通过SEM对纤维形貌进行表征,DSC和纤维强力测试仪对纤维膜的热力学性能和机械性能进行表征。而FI-IR光谱则是为了测试纤维膜中氢键的形成和强弱。PAA是一种具有良好机械性能,热力学稳定性能的聚电解质,其亲水官能团-COOH良好的化学活性,使PAA被广泛用于高吸水性树脂,污水中染料和金属离子的吸附等方面。但PAA本身易溶于水,所以需要对PAA进行交联,提高其在水中的稳定性,本实验以EG作为交联剂,H2SO4作为引发剂,并将纺制好的PAA纳米纤维膜放在不同交联温度下进行热处理。探究了交联剂的浓度,PAA纺丝液浓度和电压对PAA纳米纤维膜形态的影响及交联温度,交联时间对PAA纳米纤维交联程度的影响。通过同轴静电纺丝法分别制备了PEO-PAA和PEO-PAA/EG核-壳纳米纤维。通过利用SEM对核-壳纤维的表面进行表征,利用TEM对纤维的核-壳结构进行表征,制备出直径均匀,核-壳结构完善的同轴纳米纤维。在实验过程中,不断改变核给液速度,制备出不同界面面积的核-壳纳米纤维,并通过FT-IR光谱对其进行表征,验证了在核组分PEO和壳组分PAA界面上形成了氢键。此外,还对两种核-壳纳米纤维进行热交联,通过纤维强力测试仪对热交联前后的核-壳纳米纤维膜的力学性能进行表征。
[Abstract]:Hydrogen bond is a much weaker interaction than ionic bond, coordination bond and other chemical bond, but it improves the compatibility of polymer and the stability of complex.It plays an important role in improving the physical properties and crystal structure of the compounds.Hydrogen bonds can be formed both in the body and at various interfaces.At present, the main research on the formation of hydrogen bond on the interface is to use hydrogen bond as the driving force of the self-assembly technology to prepare the interface hydrogen bond composite film, but there are few reports on the formation of hydrogen bond composite fiber on the interface.This is mainly due to the preparation of interfacial hydrogen bond composite fiber difficult to operate, and the size of the fiber is not controllable.Coaxial electrostatic spinning provides a simple and effective method for the preparation of core-shell composite fibers with hydrogen bonding at the interface.In this paper, poly (ethylene oxide) (PEO) was used as hydrogen bond receptor and polyacrylic acid (PAA) as hydrogen bond donor, because PEO and PAA can form conformational extension and hydrodynamic bulk PEO/PAA hydrogen bond complex.Firstly, PEO and PAA nanofibers with different concentrations and different voltages were prepared, and the effects of polymer solution properties, spinning process and environment on the morphology of the fibers were investigated, which laid a certain experimental foundation for the preparation of core-shell nanofibers.The morphology of the fiber was characterized by SEM and the thermodynamic and mechanical properties of the film were characterized by fiber strength tester.The FI-IR spectrum is designed to test the formation of hydrogen bonds in fiber membrane and its strength. PAA is a kind of polyelectrolyte with good mechanical and thermodynamic stability. Its hydrophilic functional group -COOH has good chemical activity, which makes PAA widely used in superabsorbent resin.Adsorption of dyes and metal ions in sewage.However, PAA is easily soluble in water, so it is necessary to cross-link PAA to improve its stability in water. In this experiment, EG was used as crosslinking agent and H _ 2SO _ 4 as initiator, and the spun PAA nanofiber films were treated at different crosslinking temperatures.The effects of crosslinking agent concentration and voltage on the morphology of PAA nanofibers and the effects of crosslinking temperature and crosslinking time on the crosslinking degree of PAA nanofibers were investigated.PEO-PAA and PEO-PAA/EG core-shell nanofibers were prepared by coaxial electrostatic spinning.The core-shell nanofibers with uniform diameter and perfect core-shell structure were prepared by using SEM to characterize the core-shell fiber surface and TEM to characterize the core-shell structure.In the process of experiment, core-shell nanofibers with different interface areas were prepared by changing the rate of nucleation feeding, and characterized by FT-IR spectra. It was verified that hydrogen bonds were formed at the interface of nuclear component PEO and shell component PAA.In addition, two kinds of core-shell nanofibers were thermally crosslinked. The mechanical properties of core-shell nanofibers before and after thermal crosslinking were characterized by fiber strength tester.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ340.64;TB383.1
【相似文献】
相关期刊论文 前10条
1 杨恩龙;王善元;李妮;赵丛涛;;静电纺丝技术及其研究进展[J];产业用纺织品;2007年08期
2 苏丁仓;;新型熔融型静电纺丝装置[J];纺织器材;2008年S2期
3 魏诗辉;李风亭;李风亭;张冰如;;静电纺丝技术及其在水处理中的应用[J];水处理技术;2009年10期
4 李山山;何素文;胡祖明;于俊荣;陈蕾;诸静;;静电纺丝的研究进展[J];合成纤维工业;2009年04期
5 刘太奇;许远秦;操彬彬;陈曦;;熔体静电纺丝及其装置的研究进展[J];新技术新工艺;2009年12期
6 薛花;熊杰;李妮;刘冠峰;;静电纺丝工艺与装置的研究进展[J];现代纺织技术;2010年02期
7 李鹏举;李明忠;;丝素静电纺丝技术的研究进展[J];现代丝绸科学与技术;2010年02期
8 郝明凤;刘勇;邓荣坚;丁玉梅;韩凌攀;杨卫民;;典型材料的熔体静电纺丝研究[J];工程塑料应用;2010年03期
9 任春华;林朝阳;叶亚莉;;在静电纺丝技术中的聚合物进展[J];泸天化科技;2010年02期
10 常会;范文娟;;静电纺丝技术的研究及应用[J];广州化工;2011年21期
相关会议论文 前10条
1 温贤涛;范红松;谭言飞;曹红丹;张兴栋;;两种静电纺丝组织工程支架性能的比较研究[A];2004年中国材料研讨会论文摘要集[C];2004年
2 朱晶心;邵惠丽;胡学超;;高浓度再生丝素蛋白水溶液的静电纺丝[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
3 冯亚凯;孟繁茹;;聚碳酸酯聚氨酯生物材料的静电纺丝[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
4 王策;;高性能静电纺丝纳米纤维的应用研究[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
5 仰大勇;马宏伟;;静电纺丝与蛋白质微阵列[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
6 刘雍;寿万;董亮;王瑞;;气泡静电纺丝技术的原理及其纤维形貌研究[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
7 张玉军;陆春;陈平;李建丰;于祺;;溶剂在高压静电纺丝中的作用[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
8 万玉芹;何吉欢;俞建勇;吴s,
本文编号:1767231
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1767231.html