常见纳米颗粒干扰芳香烃受体信号通路机制的初步研究
本文选题:芳香烃受体 + 纳米颗粒 ; 参考:《山东大学》2017年硕士论文
【摘要】:纳米材料由于其特异的理化性质已经被广泛应用于诸如航空航天、汽车工业、环保建材、体育用品、电子器件以及日常消费品等领域,而且在生物医药领域如诊断、生物成像、生物传感器和药物运输等也具有广泛的应用前景。因此人们暴露在纳米环境中的机会也越来越频繁。相对于从日常产品的接触中暴露纳米颗粒,应用于医药领域的纳米颗粒由于可以通过摄入和注射等方式直接进入人体,因此人们更加关注纳米颗粒在这一领域额应用的安全性。芳香烃受体(Aryl hydrocarbon receptor,AhR)作为调控外源毒性化合物代谢基因的关键核受体,其下游被研究最多也是最经典的靶基因是细胞色素P4501A1(CYP1A1)。近期的研究发现AhR在正常的生理条件下依然发挥着重要的作用,比如细胞增殖和分化,免疫平衡的调控等对AhR及其相关信号通路的干扰对细胞和生物体正常的生理功能可能产生不利影响。以往对AhR干扰物的研究往往聚焦于小分子化合物,忽略了一系列新颖的人工合成材料如纳米颗粒也可能干扰AhR信号通路。已有的研究表明纳米颗粒可能会干扰CYP1A1等AhR下游基因的表达活性。考虑到纳米颗粒在环境中的广泛分布以及对人类健康的高暴露风险,AhR信号通路是否能被纳米颗粒干扰是个急需解决的问题。我们首先选择以稳转荧光素酶报告基因的小鼠肝癌细胞CBG2.8D为实验模型,评价了几种常见纳米颗粒包括碳纳米管(MWCNTs-COOH)、氧化石墨烯(GO-PEG)、纳米二氧化硅颗粒(nSiO_2)、纳米二氧化钛颗粒(nTiO_2)、纳米金颗粒(AuNPs)以及纳米氧化锌颗粒(nZnO)对AhR信号通路的干扰能力。实验结果表明上述纳米颗粒除nTiO_2外,都具有不同程度干扰AhR-Luciferase通路的能力。为了进一步阐明了纳米颗粒与AhR信号通路之间相互作用的内在分子机制,随后我们选择了 MWCNTs-COOH为模型,利用实时荧光定量PCR和蛋白质免疫印迹等技术,在基因和蛋白水平验证了 MWCNTs-COOH对AhR信号通路的干扰作用机制。结果表明MWCNTs-COOH能够在基因和蛋白水平抑制CYP1A1的表达,同时能够改变AhR的基因表达水平和其总蛋白含量。但这种现象不是由于ROS所引起。随后的激酶抑制剂实验表明MWCNTs-COOH对AhR-CYP1A1信号通路的抑制至少部分是由于胞外调节蛋白激酶(Extracellular signal-regulated kinase,ERK)介导。而内吞抑制剂实验同时也表明,对AhR-CYP1A1信号通路的抑制部分需要细胞对MWCNTs-COOH的摄入。本研究不仅对阐明纳米颗粒与AhR之间相互作用及其内在机制具有理论意义,而且能够完善纳米颗粒的风险评估,对纳米颗粒的安全性设计提供理论依据。
[Abstract]:Nanomaterials have been widely used in such fields as aerospace, automobile industry, environmental protection building materials, sporting goods, electronic devices and consumer goods due to their specific physical and chemical properties, as well as in biomedical fields such as diagnostics, biomedical imaging, etc. Biosensors and drug transportation also have a wide range of applications. As a result, opportunities for exposure to nanoscale environments are becoming more and more frequent. Compared with the exposure of nanoparticles from the daily products, the nanoparticles used in the field of medicine can enter the human body directly through ingestion and injection, so people pay more attention to the safety of nanoparticles in this field. Aryl hydrocarbon receptor AhRis is a key nuclear receptor for regulating the metabolic genes of exogenous toxic compounds. The most studied and classic downstream target gene is cytochrome P4501A1CY CYP1A1. Recent studies have found that AhR still plays an important role in normal physiological conditions, such as cell proliferation and differentiation. The regulation of immune balance may have adverse effects on the normal physiological function of cells and organisms due to the interference of AhR and its related signaling pathways. Previous studies on AhR interferences have focused on small molecular compounds, ignoring a series of novel synthetic materials such as nanoparticles that may interfere with the AhR signal pathway. Previous studies have shown that nanoparticles may interfere with the expression activity of AhR downstream genes such as CYP1A1. Considering the widespread distribution of nanoparticles in the environment and the high exposure risk to human health, whether the AhR signaling pathway can be interfered by nanoparticles is an urgent problem to be solved. We first selected mouse hepatoma cell line CBG2.8D with stable luciferase reporter gene as the experimental model. The interference ability of several common nanoparticles, including MWCNTs-COOHU, graphene oxide GO-PEGN, nano-silica particles, nSiO2O _ 2, TIO _ 2 particles, au _ 2O _ 2, au _ (NPs) and ZnO _ 2O _ 2, to the AhR signal pathway was evaluated. The experimental results show that all the nanoparticles except nTiO_2 have the ability to interfere with the AhR-Luciferase pathway to varying degrees. In order to further elucidate the intrinsic molecular mechanism of interaction between nanoparticles and AhR signaling pathway, we then selected MWCNTs-COOH as a model, using real-time fluorescent quantitative PCR and Western blot techniques. The interference mechanism of MWCNTs-COOH on AhR signaling pathway was verified at the gene and protein levels. The results showed that MWCNTs-COOH could inhibit the expression of CYP1A1 at the gene and protein levels, and change the gene expression level and the total protein content of AhR at the same time. But this phenomenon is not caused by ROS. Subsequent kinase inhibitor experiments showed that the inhibition of AhR-CYP1A1 signaling pathway by MWCNTs-COOH was at least partly mediated by extracellular signal-regulated kinase (ERK). The endocytosis inhibitor experiment also showed that the inhibition of AhR-CYP1A1 signaling pathway required cell uptake of MWCNTs-COOH. This study not only has theoretical significance to clarify the interaction between nanoparticles and AhR and its intrinsic mechanism, but also can improve the risk assessment of nanoparticles and provide theoretical basis for the safety design of nanoparticles.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R114;TB383.1
【相似文献】
相关期刊论文 前2条
1 姜龙;程冰川;李鱼;;多溴二苯醚取代特征对其芳香烃受体结合能力的效应分析[J];化学学报;2014年06期
2 周海龙;张林宝;廖春阳;韦双双;郑继平;薛钦昭;;持久性有机污染物对水生动物芳香烃受体通道的毒理机制及其早期监测(英文)[J];生态毒理学报;2010年01期
相关会议论文 前5条
1 裴新辉;赵斌;;芳香烃受体转录调控的机理研究[A];中国化学会第28届学术年会第2分会场摘要集[C];2012年
2 赵斌;;基于芳香烃受体通路的二恶英毒理机制研究进展[A];第八届全国分析毒理学大会暨中国毒理学会分析毒理专业委员会第五届会员代表大会论文摘要集[C];2014年
3 田文静;裴新辉;赵斌;;芳香烃受体蛋白单克隆抗体的制备及应用[A];中国化学会第28届学术年会第2分会场摘要集[C];2012年
4 蔺远;穆云松;张爱茜;王连生;;芳香烃受体与其配体的分子动力学研究[A];第五届全国环境化学大会摘要集[C];2009年
5 朱从会;赵斌;;芳香烃受体在环境毒理学研究中的新认识[A];中国毒理学会第六届全国毒理学大会论文摘要[C];2013年
相关博士学位论文 前1条
1 王朝奎;白介素27和芳香烃受体在Vogt-小柳原田综合征和Behcet病发病机制中作用的研究[D];重庆医科大学;2014年
相关硕士学位论文 前8条
1 桂晓玲;芳香烃受体及肝脏代谢酶在饮用水有机提取物染毒大鼠肝脏中的表达及意义[D];贵阳医学院;2015年
2 魏永义;常见纳米颗粒干扰芳香烃受体信号通路机制的初步研究[D];山东大学;2017年
3 王卓;基于芳香烃受体系统的痕量二恶英生物检测方法的研究[D];天津医科大学;2007年
4 过倩萍;SUMO化修饰对芳香烃受体AhR调控机制的研究[D];大连理工大学;2010年
5 李磊;益艾康胶囊对HIV感染者外周血Th22细胞及其关键转录因子芳香烃受体表达的影响[D];河南中医学院;2015年
6 王钰莹;芳香烃受体在肠易激综合征小鼠模型Th17细胞活化中的作用[D];郑州大学;2014年
7 杨尚儒;芳香烃受体AHR通过破坏DNA成环负向调控LPS诱导的骨桥蛋白OPN的表达[D];山东大学;2014年
8 赵娜;二恶英生物检测体系相关蛋白质的表达[D];天津医科大学;2005年
,本文编号:1846380
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1846380.html