纳米白炭黑的制备和改性
发布时间:2018-05-12 10:54
本文选题:纳米白炭黑 + 表面活性剂 ; 参考:《辽宁科技大学》2015年硕士论文
【摘要】:纳米白炭黑是一种无机非金属材料,被广泛应用在各个领域。但其粒径小且表面含有大量的硅羟基,表面能较高,使其处于一种非稳定的热力学状态,容易产生团聚从而影响其应用性能。由于纳米白炭黑具有很高的化学反应活性,利用这一性质可以使用不同物质对其表面进行化学修饰,以改善它的表面性能,使其在有机材料中得到更好的应用。本论文首先采用不同类型表面活性剂改性纳米白炭黑,确定十六烷基三甲基溴化铵(CTMAB)为改性最佳表面活性剂。进一步探究了CTMAB用量、反应温度、反应时间、搅拌速度对改性效果的影响。采用正交试验优化法确定最佳条件为:表面活性剂用量4%,反应温度55℃,反应时间60min,搅拌速度375r/min。改性后纳米白炭黑的邻苯二甲酸二丁酯(DBP)吸收值由2.47m L/g增加到2.76m L/g,疏水率由11.62%增加到19.80%。由于单纯使用表面活性剂改性效果比较有限,本论文采用不同硅烷偶联剂协同改性纳米白炭黑,确定十六烷基三甲氧基硅烷(CG1631)为改性最佳硅烷偶联剂。利用电导率法在线监测CG1631的水解情况,探讨了水解方式、水解溶剂、水解溶剂pH、水解溶剂醇水体积比、水解反应温度对其水解程度的影响。确定最佳水解条件为:水解方式为正水解、水解溶剂为乙醇和水,水解溶剂pH为4,水解溶剂醇水体积比为1:1,水解反应温度为25℃。将该条件下水解后的CG1631作为协同改性剂添加到纳米白炭黑的制备过程中,研究了硅烷偶联剂用量、反应温度、反应时间、滴加时间对改性效果的影响。采用响应面优化法确定最佳改性条件为:CG1631用量9.31%,反应温度93.28℃,反应时间2.18h,滴加时间20min。在该协同改性条件下,纳米白炭黑的DBP吸收值达到3.85m L/g。本文将协同改性后的纳米白炭黑添加到聚丙烯酸酯乳液中,制得复合涂膜。实验结果表明,改性纳米白炭黑可以增强聚丙烯酸酯涂膜的抗紫外性能,使得聚丙烯酸酯涂膜在240nm-350nm波段紫外吸收能力增大,在最大吸收波长276nm下的吸光度由0.47增加到3.86,且改性后纳米白炭黑在有机基体中的分散性明显增强。
[Abstract]:Nano-silica is an inorganic non-metallic material, which is widely used in various fields. However, its particle size is small, its surface contains a lot of silicon hydroxyl groups, and its surface energy is high, which makes it in an unstable thermodynamic state, and it is easy to be agglomerated, thus affecting its application performance. Because of its high chemical reaction activity, Nano-silica can be chemically modified by different substances to improve its surface properties and make it better used in organic materials. In this paper, different surfactants were first used to modify nano-silica and cetyltrimethylammonium bromide (CTMAB) was chosen as the best surface active agent. The effects of CTMAB dosage, reaction temperature, reaction time and stirring speed on the modification effect were further investigated. The optimum conditions were determined by orthogonal test: surfactant dosage 4, reaction temperature 55 鈩,
本文编号:1878349
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1878349.html