磷掺杂ZnO纳米柱的制备及掺杂机理
发布时间:2018-05-22 09:11
本文选题:水热法 + 磷掺杂 ; 参考:《哈尔滨工业大学》2015年硕士论文
【摘要】:ZnO是典型的第三代宽带隙半导体,是II-VI族直接带隙半导体,其禁带宽度为3.37e V,室温下激子束缚能高达60me V,远大于室温的热离化能26me V,因此ZnO是制备室温紫外激光器的优良材料;而由于ZnO材料热稳定性高、外延温度低、锌元素价格便宜等特点,使得.ZnO成为了研究者们关注的焦点。虽然ZnO有着诸多优点,但是由于未掺杂的ZnO为n型半导体,其掺杂杂质的低固溶度和ZnO本身的自补偿效应使得ZnO的p型掺杂十分困难,这也大大的阻碍了ZnO在半导体领域的应用。研究者们对ZnO的p型掺杂进行了大量的研究,但是仍.然有很多问题没有解决。本文采用水热法,制备出未掺杂的ZnO纳米柱,并在制备本征ZnO纳米柱的基础上,以磷酸二氢铵为磷源制备出了磷掺杂p型ZnO纳米柱,利用扫描电子显微镜、能谱仪、和光致发光测试系统对其进行表征,研究了不同水热条件对磷掺杂ZnO纳米柱的影响,并初步的研究了磷掺杂ZnO纳米柱的掺杂机理。具体的研究内容如下:1、首先对在衬底上利用溶胶-凝胶提拉法制备ZnO种子层进行改进,减少制备种子层过程中暴露在空气中的时间,减少制备的ZnO纳米柱中的污染杂质;并改进种子层提拉技术,增加种子层提拉次数,并对在提拉后对种子进行退火处理,使得制备的ZnO纳米柱尺寸均匀、长径比均一、有良好的c轴取向。2、以水热法制备本征ZnO纳米柱为基础,以磷酸二氢铵作为磷源,制备出了磷掺杂ZnO纳米柱。用SEM、EDS对制备的磷掺杂ZnO纳米柱进行表征,研究了不同的水热条件,对磷掺杂ZnO纳米柱形貌、尺寸、磷含量等的影响。制备出了尺寸均匀、长径比均一的磷掺杂ZnO纳米柱。3、通过对磷掺杂ZnO纳米柱进行不同温度的退火处理,成功制备出了磷掺杂p型ZnO纳米柱。通过SEM、EDS等测试方法对p型ZnO纳米柱进行表征,对磷掺杂ZnO纳米柱的生长及掺杂机理进行了解释。并通过低温PL和变温PL测试对磷掺杂p型ZnO纳米柱进行了表征,研究了磷掺杂ZnO中导电类型的转变及磷元素在ZnO中的掺杂能级,从而证明了制备出的磷掺杂ZnO纳米柱为p型半导体。
[Abstract]:ZnO is a typical third generation wide band gap semiconductor, which is a direct band gap semiconductor of II-VI family. Its band gap width is 3.37e V. the exciton binding energy is as high as 60me V at room temperature, which is much larger than the thermal ionization energy 26me V at room temperature. Therefore, ZnO is an excellent material for preparing room temperature ultraviolet lasers. Because of its high thermal stability, low epitaxial temperature and low price of zinc, ZnO has become the focus of researchers. Although ZnO has many advantages, because the undoped ZnO is n-type semiconductor, the low solid solubility of doping impurity and the self-compensation effect of ZnO make the p-type doping of ZnO very difficult. This also greatly hinders the application of ZnO in semiconductor field. Researchers have done a lot of research on p-type doping of ZnO, but still. There are, however, many unsolved problems. In this paper, undoped ZnO nanorods were prepared by hydrothermal method. On the basis of the preparation of intrinsic ZnO nanorods, P-doped p-type ZnO nanorods were prepared with ammonium dihydrogen phosphate as phosphorus source. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used to prepare P-doped p-type ZnO nanorods. The effects of hydrothermal conditions on phosphorus-doped ZnO nanorods were studied. The doping mechanism of phosphorus-doped ZnO nanorods was also preliminarily studied. The specific research contents are as follows: 1. Firstly, the preparation of ZnO seed layer by sol-gel Czochralski method on the substrate is improved to reduce the time of exposure to air during the preparation of the seed layer, and to reduce the polluted impurities in the prepared ZnO nano-column. The technique of seed layer Czochralski was improved to increase the number of seed layer Czochralski and to annealing the seed after Czochralski. The results showed that the ZnO nano-column was uniform in size and the aspect ratio was uniform. It has good c-axis orientation. Based on the intrinsic ZnO nanocolumn prepared by hydrothermal method and ammonium dihydrogen phosphate as phosphorus source, phosphorus-doped ZnO nanocolumn was prepared. Phosphorus-doped ZnO nanocolumns were characterized by SEMS-EDS. The effects of different hydrothermal conditions on the morphology, size and phosphorus content of P-doped ZnO nanocolumns were studied. Phosphorus-doped ZnO nanorods with uniform size and uniform aspect ratio were prepared. P-doped ZnO nanorods were successfully prepared by annealing at different temperatures. The p-type ZnO nanorods were characterized by means of SEM-EDS, and the growth and doping mechanism of P-doped ZnO nanocolumns were explained. The P-doped p-type ZnO nanorods were characterized by low temperature PL and variable temperature PL measurements. The transition of conducting type and the doping level of phosphorus in ZnO were studied. It is proved that the P-doped ZnO nanocrystals are p-type semiconductors.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.1;TQ132.41
【相似文献】
相关期刊论文 前10条
1 徐志昌;张萍;;液-液掺杂机理的研究[J];中国钨业;1995年04期
2 李树杰 ,陈正球;高温抗下垂钨丝的掺杂机理及有关工艺因素的研究[J];钢铁研究总院学报;1982年00期
3 高波;崔红;张艳峰;魏雨;郭晶华;;ZnO的p型掺杂研究进展[J];河北师范大学学报(自然科学版);2014年05期
4 沈宏;夏伊静;戴启洲;陈建孟;;新型二氧化铅电极性能及掺杂机理研究[J];环境科学学报;2013年02期
5 贾兴涛;何文;冯英俊;赵红石;张旭东;;稀土元素(Ce)在TiO_2基体中的掺杂机理研究[J];化工科技;2006年03期
6 许莹;窦玉博;王娟;;溶胶-凝胶法制备AZO薄膜及Al掺杂机理的研究[J];功能材料;2010年S2期
7 徐志昌;张萍;;液-液掺杂钨坯的性能与结构[J];中国钨业;1994年01期
8 曾文;刘天模;雷晓飞;甘浩宇;;贵金属Pd离子掺杂纳米ZnSnO_3的氢敏性能及掺杂机理[J];纳米技术与精密工程;2010年06期
9 周武艺;曹庆云;唐绍裘;刘英菊;;硫掺杂纳米TiO_2的掺杂机理及可见光催化活性的研究[J];无机材料学报;2006年04期
10 ;[J];;年期
相关硕士学位论文 前1条
1 张思;磷掺杂ZnO纳米柱的制备及掺杂机理[D];哈尔滨工业大学;2015年
,本文编号:1921448
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1921448.html