γ辐照对GFRP拉-拉疲劳性能的影响
本文选题:γ辐照 + GFRP ; 参考:《复合材料学报》2017年10期
【摘要】:玻璃纤维增强树脂基复合材料(Glass Fiber Reinforced Plastic,GFRP)由于其良好的电绝缘性和力学性能,被作为北京正负电子对撞机束流管支撑法兰的制作材料。北京电子对撞机运行时,将对束流管及其支撑法兰产生大量γ和中子辐射。研究发现,玻璃纤维增强环氧树脂基复合材料长期处于γ辐射环境中,其力学性能会发生变迁。本文对由20kGy、100kGy、200kGy剂量γ辐照前后的GFRP试件进行拉-拉疲劳实验研究,发现γ辐照对低周疲劳阶段的疲劳寿命影响较为明显,而对于高周疲劳阶段疲劳寿命影响不大。基于Hwang和Han提出的假设,建立了拉-拉疲劳双参数疲劳寿命模型,并验证该疲劳寿命模型的准确性。利用扫描电镜对试件进行观察,发现辐照后环氧树脂基体出现碎片,环氧树脂与增强玻璃纤维的黏结界面受到破坏,但辐照对玻璃纤维影响程度较小。红外光谱图显示环氧树脂在辐照过程中降解反应较交联反应占优势。
[Abstract]:Glass Fiber Reinforced Plastics GFRP (glass reinforced resin matrix composite) has been used as the fabrication material for beam pipe support flange of Beijing positron and negative electron collider due to its good electrical insulation and mechanical properties. During the operation of the Beijing Electron Collider, a large amount of 纬 and neutron radiation will be produced on the beam tube and its supporting flange. It was found that the mechanical properties of glass fiber reinforced epoxy matrix composites changed when they were exposed to 纬-radiation for a long time. In this paper, tensile fatigue tests of GFRP specimens before and after 200kGy irradiation with a dose of 20 kGy of 100kGy or 100kGy have been carried out. It is found that 纬 irradiation has a more obvious effect on fatigue life at low cycle fatigue stage than on high cycle fatigue stage. Based on the assumptions proposed by Hwang and Han, a two-parameter fatigue life model of tensile fatigue is established, and the accuracy of the model is verified. Scanning electron microscope (SEM) was used to observe the samples. It was found that there were fragments in epoxy resin matrix after irradiation, and the bonding interface between epoxy resin and reinforced glass fiber was destroyed, but irradiation had little effect on glass fiber. Infrared spectra showed that the degradation reaction of epoxy resin was superior to that of crosslinking reaction during irradiation.
【作者单位】: 北京科技大学机械工程学院;北京科技大学材料科学与工程学院;
【基金】:国家自然科学青年基金(51605025)
【分类号】:TB332;TQ327.1
【相似文献】
相关期刊论文 前10条
1 张孝深;隔板式活络模在混杂型GFRP舱垫板中的应用[J];玻璃钢/复合材料;1989年06期
2 安庆升,刘在阳,张秀艳;PP/GFRP外压储罐的研制[J];纤维复合材料;1999年02期
3 乔光辉;刘卫生;;导电GFRP及其应用技术[J];纤维复合材料;2006年01期
4 师哲,魏德永;承载式GFRP车身轿车的强化试验研究[J];玻璃钢/复合材料;1990年06期
5 张孝深,陆承冲;镜面GFRP模具的制作及材料[J];玻璃钢/复合材料;1991年03期
6 张孝深;;玻璃纤维含量、比重、填料与GFRP厚度的关系——ZXS型尺法[J];纤维复合材料;1992年01期
7 K.Palanikumar;L.Karunamoorthy;R.Karthikeyan;;Parametric Optimization to Minimise the Surface Roughness on the Machining of GFRP Composites[J];Journal of Materials Science & Technology;2006年01期
8 陈雪;闻荻江;;GFRP复合材料的疏水性研究及表征方法[J];纤维复合材料;2006年02期
9 汤寄予;高丹盈;赵军;付亚男;;GFRP筋高温破坏特性测试方法[J];工程塑料应用;2009年03期
10 谢怀勤;陈幸开;陈辉;曲艳双;;基于神经网络遗传算法的GFRP拉挤双目标优化[J];材料科学与工艺;2010年04期
相关会议论文 前2条
1 王良纯;黄明哲;;GFRP门窗的综合应用性及经济性[A];’2000中国工程塑料加工应用技术研讨会论文集[C];2000年
2 张莉;王继辉;李学梅;唐红艳;;单纤维断裂数据表征GFRP界面强度的研究[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
相关硕士学位论文 前1条
1 林孝全;GFRP拉挤工艺过程优化与节能研究[D];哈尔滨工业大学;2007年
,本文编号:1936600
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1936600.html