金属氧化物纳米复合物在有机光电器件中的应用
本文选题:有机电子器件 + 纳米聚合物 ; 参考:《河南大学》2015年硕士论文
【摘要】:和传统的无机材料相比,有机材料由于其质轻,容易获得,易于制备及柔韧性好,可大面积生产等优点,基于有机半导体的有机电子器件在过去十年一直受到学术和工业的极大关注。在这些器件中,由于其简单的结构及可以和下一代便携式可弯曲柔性存储器件相结合,有机双稳态器件成为了一个集中研究的热点,近期,已经有一些有机双稳态器件应用到存储设备中,并取得了一些进展,将纳米复合物和纳米颗粒/有机材料的混合物作为双稳态器件的活性层是一个可以获得高ON/OFF比及寿命的很成功的方法。Zn O纳米颗粒和PVP聚合物由于具有很好的稳定性,易于制备,有很好的电学性质在过去几年当中,被广泛应用在了存储器件当中。目前,基于聚合物:富勒烯结构的太阳能电池的转换效率已经达到10.6%,而单层聚合物太阳能电池的转换效率已经达到9.94%,且已经通过认证,现在越来越多人将研究重点放在提高有机光伏器件的转换效率。影响聚合物电池的转换效率的主要因素是光吸收及电荷的收集,因此可以通过提高光吸收提高电池的转换效率,由于导体聚合物载流子迁移率较低和激子寿命较短,活性层厚度一般控制在100nm左右,厚度太大,由于自由电荷载流子的重组,这些成为降低电池转换效率的主要原因,而厚度太小会减弱光吸收,从而成为降低光电流的主要原因,因此可以选用一些特殊材料如半导体或金属能提高光捕获提高聚合物太阳能电池的转换效率。利用金属纳米颗粒的光散射与局域表面等离子体共振效应(LSPR)实现了薄膜太阳能电池的光吸收与光电流增强,因此,在聚合物太阳能电池中引入金属纳米颗粒是一种有效的提高器件的转换效率的方法,而将金属氧化物与金属颗粒以化学键的方式结合生成一种纳米聚合物也成为了可以利用表面等离子增强作用提高电池的光捕获的一种有效方法,由于Au纳米颗粒是被Zn O NPs所包覆的,可以起到对Au颗粒表面进行钝化的作用,从而可以提高表面等离子共振结构器件的稳定性。本文通过原位生成的方法合成了纳米复合物Zn O-PVP和Au-Zn O提高了有机双稳态及聚合物太阳能电池的性能。第一次将Zn O-PVP纳米复合物应用到有及双稳态器件中,将捕获介质(Zn O)用一种绝缘体简单的进行全包覆,和单纯的Zn O纳米颗粒相比,有效的提高了混合型有机双稳态器件的开关比;将Zn O NPs与Au颗粒形成的纳米复合物用到了反型的聚合物太阳能电池中,不仅保持了其等离子共振作用及减弱了激子猝灭,提高了器件的性能,同时在未封装的情况下提高了器件在空气中的寿命,具体内容如下:(1)采用简单的原位生成的方法成功合成了PVP/Zn O纳米复合物,并第一次将其作为活性层应用到电双稳态器件中,通过优化PVP层的厚度,Zn O层,Zn O NPs:PVP混合物层及PVP/Zn O层的厚度,得到了PVP层及活性层的最佳厚度,得到了PVP/Zn O纳米复合物作为有机双稳态器件活性层时,器件的ON/OFF比是最大的,最大的ON/OFF比是5.89×102,和纯Zn O NPs,Zn O NPs:PVP NPs作为活性的器件相比,它的ON/OFF明显提高,主要是由于PVP/Zn O纳米复合物对载流子电荷有三维方向的限制,载流子的存储能力提高及更好的薄膜形态,尽管现在得到的ON/OFF比还比较低,提供了可以利用纳米颗粒/聚合物的纳米复合物来提高有机双稳态的方法。(2)采用原位生成的方法成功合成了Au-Zn O纳米复合物并将其应用到反型聚合物太阳能电池中。对ITO/Au/Zn O/active layer/Mo O3/Al和ITO/Au-Zn O/active layer/Mo O3/Al两种结构器件与标准器件对比,发现,由于Au颗粒或Au-Zn O纳米复合物中Au颗粒的存在,Au颗粒都由于等离子共振作用提高了器件的转换效率,通过对Au-Zn O纳米复合物的浓度进行优化,Au-Zn O纳米复合物的器件转换效率最高达到了7.82%,和Au颗粒/Zn O纳米颗粒叠层结构的器件的效率相当。Au-Zn O纳米复合物结构器件转换效率稳定的原因是Au颗粒表面被Zn O钝化,而Au/Zn O叠层结构的器件由于Au颗粒不稳定,因此器件的稳定性不好。在对三种器件的寿命进行跟踪测试之后发现,Au-Zn O纳米复合物结构的器件的寿命是最稳定的,在12天之后,器件的转换效率仍然维持在原来的90%左右,仅仅从7.62%降到了6.90%。而Au/Zn O叠层结构的器件在12天之后转换效率降到了原来的80%,从7.60%降到了6.14%,说明在聚合物太阳能电池中加入金属-氧化物纳米复合物后明显的提高了器件的稳定性。
[Abstract]:Compared with the traditional inorganic materials, organic materials have the advantages of light quality, easy availability, easy preparation, good flexibility and large area production. Organic electronic devices based on organic semiconductors have received great attention from academic and industrial applications in the past ten years. With the combination of flexible flexible memory parts, organic bistable devices have become a focus of research. In the near future, some organic bistable devices have been applied to storage devices, and some progress has been made. The active layer of nanocomposite and nano particles / organic materials as bistable devices can be used as an active layer. The successful methods of obtaining high ON/OFF and life span,.Zn O nanoparticles and PVP polymers, are widely used in memory parts in the past few years because of their good stability, easy preparation and good electrical properties. At present, the conversion efficiency of solar cells based on polymer: fullerene structure has reached 10.6%, The conversion efficiency of single layer polymer solar cells has reached 9.94% and has been certified. More and more people now focus on improving the conversion efficiency of organic photovoltaic devices. The main factors affecting the conversion efficiency of polymer batteries are the absorption of light and the collection of charge, so the battery can be improved by improving the light absorption. Because of the low mobility of the conductor polymer carrier and the short life of the exciton, the thickness of the active layer is generally controlled around 100nm, and the thickness is too large. Because of the restructure of the free charge carrier, these are the main reasons to reduce the conversion efficiency of the battery, and the thickness is too small to weaken the light absorption, thus becoming the main reduction of the photocurrent. Therefore, some special materials, such as semiconductors or metals, can be used to improve the conversion efficiency of the polymer solar cells. The light scattering and local surface plasmon resonance effect (LSPR) of the metal nanoparticles are used to achieve the optical absorption and photocurrent enhancement of the thin film solar cells. Therefore, the polymer solar energy is used in the solar cell. The introduction of metal nanoparticles in the battery is an effective method to improve the conversion efficiency of the devices. The combination of metal oxides and metal particles in chemical bonds to produce a nano polymer has become an effective method to improve the light capture of the battery by surface plasmon enhancement. Because of Au nanoparticles, The surface of Au particles can be passivated by the Zn O NPs, which can improve the stability of the surface plasmon resonance structure. In this paper, the nano composite Zn O-PVP and Au-Zn O are synthesized by the method of in situ synthesis. The organic bistability and the performance of the polymer solar cells are improved. The first time Zn O-PVP is received. The rice complex is applied to the bistable device, and the capture medium (Zn O) is fully covered with an insulator, and the switching ratio of the hybrid organic bistable device is effectively improved compared with the simple Zn O nanoparticles. The nanocomposite formed by the Zn O NPs and Au particles is used in the inverse polymer solar cell. It not only keeps its plasma resonance and weakens the exciton quenching, but also improves the performance of the device, and improves the life of the device in the air without encapsulation. The specific contents are as follows: (1) the PVP/Zn O nanocomposite is successfully synthesized by a simple in situ method, and is applied to the electricity as the active layer for the first time. In bistable devices, the optimum thickness of the PVP layer and the active layer is obtained by optimizing the thickness of the PVP layer, the Zn O layer, the Zn O NPs:PVP mixture layer and the PVP/Zn O layer. When the PVP/Zn O nanocomposite is used as the active layer of the organic bistable device, the ON/OFF ratio of the device is the largest and the maximum ratio is 5.89 * 102. Compared with the active devices, the ON/OFF of NPs:PVP NPs is obviously improved, mainly because the PVP/Zn O nanocomposite has a three dimensional limit on the charge carrier charge, the storage capacity of the carrier and the better film form. Although the ON/OFF ratio is still lower now, the nano particles / polymer nanocomposite can be used. The method of improving the organic bistability of organic compounds. (2) the Au-Zn O nanocomposites were successfully synthesized by in situ method and applied to the inverse polymer solar cells. Compared with the standard devices, two kinds of ITO/Au/Zn O/active layer/Mo O3/Al and ITO/Au-Zn O/active layer/Mo O3/Al are compared with the standard devices, and it is found that the Au particles or Au-Z are due to Au particles or Au-Z. The existence of Au particles in n O nanocomposites, Au particles all improve the conversion efficiency of the device by the effect of plasma resonance. By optimizing the concentration of Au-Zn O nanocomposites, the conversion efficiency of the Au-Zn O nanocomposite is up to 7.82%, and the efficiency of the device is similar to the Au particle /Zn O nano particle layer structure. The stable conversion efficiency of the nanocomposite structure device is due to the passivation of the Au particle surface by Zn O, while the device's stability is not good because of the unstable Au particles in the Au/Zn O stack structure. After tracking the life of the three devices, the life of the Au-Zn O nanocomposite structure is the most stable, in 12 days. After that, the conversion efficiency of the device remained at about 90%, only from 7.62% to 6.90%. and the Au/Zn O stack structure was reduced to 80%, from 7.60% to 6.14% after 12 days, indicating that the addition of metal oxide nanocomposites in the polymer solar cell significantly improved the stability of the device. Qualitative.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM914.4;TB33
【相似文献】
相关期刊论文 前10条
1 赵金良;王振洋;张立德;;纳米微粒母料—有机硅/无机硅纳米复合物[J];化工新型材料;2006年01期
2 蔡积庆;;高性能嵌入电容元件用的最佳环氧-钛酸钡纳米复合物[J];印制电路信息;2008年06期
3 周学懋;陈晓萌;吴学邦;水嘉鹏;朱震刚;;聚甲基丙烯酸甲酯/镓纳米复合物的动力学弛豫行为[J];物理学报;2011年03期
4 Materials Views;;大块聚合物纳米复合物:新型非线性光学材料[J];功能材料信息;2013年02期
5 张永成;赵雨花;亢茂青;王心葵;;聚氨酯基层状硅酸盐纳米复合物研究进展[J];化学进展;2006年01期
6 黄美荣;马小立;李新贵;;聚苯二胺与贵金属纳米复合物的研究进展[J];河南化工;2008年06期
7 杨玲;王勇毅;;氢氧化镁/红磷对硅橡胶/黏土纳米复合物阻燃性能的研究[J];中国安全科学学报;2009年11期
8 叶朝阳,顾宜;苯并VA嗪中间体/蛭石插层纳米复合物热固化行为的研究[J];高分子学报;2004年02期
9 史莹华;许梓荣;王成章;;蒙脱石纳米复合物的制备及其吸附作用研究[J];农业工程学报;2006年10期
10 杨霞;陈秋云;宋京宝;;具有肿瘤荧光成像性能的核壳纳米过氧化氢酶模拟物(英文)[J];无机化学学报;2012年01期
相关会议论文 前10条
1 祁宁;王元为;王丹丹;陈志权;;Co_3O_4/ZnO纳米复合物微结构的正电子湮没研究[A];第十四届全国核物理大会暨第十届会员代表大会论文集[C];2010年
2 吴丽艳;郭志华;滕利荣;高波;;羟基磷灰石/药物纳米复合物的制备研究[A];吉林省第六届生命科学大型学术报告会论文集[C];2008年
3 陈谱;曹菲菲;张俐娜;;大豆蛋白/氢氧化铝纳米复合物的结构与性能[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
4 王晓亮;顾强;孙平川;H H Winter;薛奇;;固体核磁共振双量子氢谱对聚丁二烯/粘土纳米复合物中链动力学的研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
5 郑田;卢晓峰;边秀杰;张城城;王策;;CNT/PPy/K_xMnO_2三元纳米复合物的制备及电催化性能研究[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
6 武海青;何光裕;陈海群;孙小强;汪信;;多价态银-还原氧化石墨烯纳米复合物的光合成及其抗菌应用[A];中国化学会第28届学术年会第5分会场摘要集[C];2012年
7 叶春雪;杨荣杰;仪德启;;聚磷酸铵/钙基蒙脱土纳米复合物的结构与性质[A];2012年中国阻燃学术年会论文集[C];2012年
8 周辉辉;李娟;刘又年;;自组装法制备茶多酚-明胶-葡聚糖纳米复合物[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
9 李辉;吴思多;吴锦荣;黄光速;;石墨烯/聚苯乙烯纳米复合物的导电性研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
10 仇士龙;袁钻如;潘磊;王玉婷;谢鸿峰;程昒时;;氧化石墨/环氧树脂纳米复合物的固化行为研究[A];中国化学会第十五届全国化学热力学和热分析学术会议论文摘要[C];2010年
,本文编号:1963381
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/1963381.html