铝诱导非晶硅薄膜的低温快速晶化研究
本文选题:磁控溅射 + 非晶硅薄膜 ; 参考:《云南师范大学》2015年硕士论文
【摘要】:非晶硅薄膜是硅基薄膜的基础材料,具有吸收系数大、弱光性能好等优点,应用于薄膜太阳电池时材料用量仅为体硅太阳电池的1%左右。但非晶硅薄膜太阳电池存在转换效率低、光致衰减(S-W)效应等缺陷。多晶硅、微晶硅及纳米硅等晶化硅薄膜材料既有良好的光电性能,还能有效降低光致衰退等优点。此外,通过控制晶化硅薄膜的晶化率、晶粒尺寸等微结构可调控其光电性能。因此,晶化硅薄膜是理想的光伏材料之一。本文采用磁控溅射镀膜系统,结合快速光热退火,开展了铝诱导非晶硅薄膜的低温快速晶化研究。通过对晶化硅薄膜性能的表征分析,获得了制备晶化硅薄膜的优化工艺参数;计算了薄膜的晶化率,阐释了铝诱导对晶化硅薄膜性能的影响;揭示了晶粒尺寸与带隙等性能之间的相互关系。本文主要完成了以下几方面的研究工作:1、通过设置不同的衬底温度和溅射功率制备了硅薄膜。研究了不同衬底温度和溅射功率对硅薄膜的物相结构、沉积速率及光学性能的影响,并结合SPSS统计分析了薄膜的厚度均匀性。结果表明:实验设置的工艺范围内制备的硅薄膜均为非晶硅薄膜;薄膜的沉积速率、均匀性及光学性能均随衬底温度和溅射功率先增加后减小;获得了较理想的镀膜工艺参数:衬底温度200℃,功率100W。2、为了研究衬底及其温度对铝诱导非晶硅薄膜晶化的影响,制备了Glass/a-Si/Al和Si(400)/a-Si/Al结构的复合膜,经N2气氛400℃退火25min,获得了晶化硅薄膜。结果显示:Glass/a-Si/Al结构下的晶化硅薄膜有Si(111)和Si(220)取向的结晶峰;Si(400)/a-Si/Al结构下的晶化硅薄膜仅出现与衬底相同的Si(400)结晶峰;单晶硅衬底比玻璃衬底更有利于薄膜的晶化;衬底温度升高,有助于提高硅薄膜的晶化率,然而衬底温度过高时,薄膜的晶化率又会降低,较理想的衬底温度为200℃。3、采用磁控溅射镀膜系统,在单晶硅衬底上外延生长了不同厚度的硅薄膜,经过N2气氛400℃退火25min,研究了单晶硅衬底对非晶硅薄膜晶化的影响。结果表明:非晶硅薄膜受单晶硅的诱导在退火过程中形成晶化硅薄膜,其晶粒沿单晶衬底取向择优生长;随着外延硅薄膜厚度的逐渐增加,晶化硅薄膜的晶化率、晶粒尺寸逐渐减小,表面均匀性增加。4、为了研究退火温度对铝诱导非晶硅薄膜晶化的影响,将Glass/a-Si/Al结构的复合膜于N2气氛中300℃~500℃下光热退火25min。结果表明:退火处理后硅薄膜均形成了晶化硅薄膜;退火温度从300℃逐渐升到400℃,晶化硅薄膜的晶粒尺寸、晶化率逐渐增加,表面均匀性减小;退火温度从400℃逐渐升到500℃,晶化硅薄膜的晶粒尺寸、晶化率继续增加,表面均匀性增加;通过对薄膜晶化率、晶粒尺寸及带隙之间的对应关系作三维表面图,获得了晶化率、晶粒尺寸与带隙之间的关系;不同微结构的晶化硅薄膜表面呈现出不同的颜色,实验制备了表面呈现黑灰色、棕色、蓝色、红色、黄色的晶化硅薄膜,作为电池P层,有望制备出彩色硅基薄膜太阳电池。5、结合Al诱导非晶硅的晶化机理,设计并采用Al/Si共溅射法在玻璃衬底上制备了a-Si/Al复合膜,膜中Al、Si含量可通过溅射功率比来调节。将共溅射制备的薄膜在N2气氛中350℃光热退火10min可制备出晶化硅薄膜。结果表明:当Al/Si溅射功率比为0.10时制备的晶化硅薄膜的Raman峰位于510cm-1,为纳米晶硅薄膜;随着Al含量的增加,薄膜晶化率与晶粒尺寸增加,薄膜带隙逐渐降低。采用共溅射法可在350℃、10min的退火条件下制备出晶化率为(50.81%~88.58%)、Si(111)取向的晶化硅薄膜。
[Abstract]:Amorphous silicon thin film is the basic material of silicon based film. It has the advantages of large absorption coefficient and good weak light performance. The amount of material used in thin film solar cells is only about 1% of bulk silicon solar cells. However, amorphous silicon thin film solar cells have defects such as low conversion efficiency and light induced attenuation (S-W). Polycrystalline silicon, microcrystalline silicon and nanoscale silicon are crystalline silicon. The thin film materials have good photoelectric properties and can effectively reduce the advantages of light induced decline. In addition, by controlling the crystallization rate of the crystalline silicon thin films, the microstructures such as grain size can regulate their photoelectric properties. Therefore, the crystalline silicon thin film is one of the ideal photovoltaic materials. The low temperature and rapid crystallization of amorphous silicon films induced by aluminum was studied. Through the analysis of the properties of the crystalline silicon film, the optimized process parameters were obtained. The crystallization rate of the film was calculated, the effect of aluminum induction on the properties of the crystalline silicon film was explained, and the relationship between the grain size and the band gap properties was revealed. The main research work is completed in the following aspects: 1, silicon thin films are prepared by setting different substrate temperature and sputtering power. The effects of different substrate temperature and sputtering power on the phase structure, deposition rate and optical properties of silicon thin films are studied. The thickness uniformity of the film is analyzed by SPSS statistics. The results show that the experiment is carried out. The deposited silicon thin films are amorphous silicon thin films, and the deposition rate, uniformity and optical properties of the films are increased with the substrate temperature and sputtering power first, and the ideal coating process parameters are obtained: the substrate temperature is 200 c and the power is 100W.2. In order to study the crystallization of the amorphous silicon film induced by the substrate and its temperature, the crystallization of the film is obtained. The composite film of Glass/a-Si/Al and Si (400) /a-Si/Al structure was prepared. The crystalline silicon thin film was obtained by annealing at 400 C for 25min at N2 atmosphere. The results showed that the crystalline silicon film under Glass/a-Si/Al structure had the crystallization peak of Si (111) and Si (220) orientation; the crystalline silicon film under Si (400) /a-Si/ Al structure appeared only the same Si (400) crystallization as the substrate. The monocrystalline silicon substrate is more beneficial to the crystallization of the film than the glass substrate. The increase of the substrate temperature helps to improve the crystallization rate of the silicon film. However, the crystallization rate of the film will be reduced when the temperature is too high. The ideal substrate temperature is 200.3, and the magnetron sputtering coating system is used to grow silicon with different thickness on the monocrystalline silicon substrate. The effect of single crystal silicon substrate on the crystallization of amorphous silicon thin film was studied by N2 atmosphere at 400 C for 25min. The results showed that the amorphous silicon film was induced by monocrystalline silicon to form crystalline silicon film during the annealing process. The grain size of the amorphous silicon thin films grew along the single crystal substrate. With the increase of the thickness of the epitaxial silicon film, the crystallization rate of the crystalline silicon thin film was increased. The grain size decreased and the surface uniformity increased by.4. In order to study the effect of annealing temperature on the crystallization of amorphous silicon film induced by aluminum, the composite film of Glass/a-Si/Al structure was annealed at 300 C and ~500 C in the atmosphere of N2. The results showed that the silicon film formed the crystalline silicon film after annealing treatment; the annealing temperature gradually rose from 300 to 40. At 0 C, the grain size of the crystalline silicon film, the crystallization rate gradually increased, the surface uniformity decreased, the annealing temperature rose from 400 to 500 degrees C, the grain size of the crystalline silicon film, the crystallization rate continued to increase, the surface uniformity increased, and the crystallization rate, grain size and band gap between the film crystallization rate, the grain size and the band gap were made, and the crystallization rate was obtained. The relationship between the grain size and the band gap; the different microstructures of the crystalline silicon films show different colors. The crystalline silicon thin films with black, brown, blue, red and yellow surfaces are prepared on the surface. As the P layer of the battery, it is expected to prepare the color silicon based thin film solar cell.5, and the crystallization mechanism of amorphous silicon can be induced by Al. The a-Si/Al composite film is prepared on the glass substrate by Al/Si co sputtering. The content of Al and Si in the film can be regulated by the sputtering power ratio. The crystalline silicon film can be prepared by the photothermal annealing 10min at 350 C in the atmosphere of N2. The results show that the Raman peak of the crystalline silicon film prepared by the sputtering power ratio of 0.10 is located at 51. 0cm-1 is a nanocrystalline silicon film. With the increase of Al content, the crystallization rate and grain size of the film increase, and the band gap gradually decreases. The crystallization rate of crystalline silicon thin films with crystallization rate of (50.81%~88.58%) and Si (111) orientation can be prepared by CO sputtering at 350 C and 10min.
【学位授予单位】:云南师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 靳瑞敏;陈兰莉;罗鹏辉;郭新峰;卢景霄;;在不同时间下退火对非晶硅薄膜晶化的影响[J];材料导报;2008年S3期
2 田跃生;;非晶硅薄膜的金属诱导晶化研究现状[J];表面技术;2011年05期
3 李军利;刘卫国;周顺;蔡长龙;;非晶硅薄膜的镍离子注入研究[J];表面技术;2013年02期
4 张溪文,韩高荣;掺硼非晶硅薄膜的微结构和电学性能研究[J];功能材料与器件学报;2003年02期
5 饶瑞,徐重阳,王长安,赵伯芳,周雪梅,曾祥斌;铝诱导非晶硅薄膜低温晶化及结构研究[J];功能材料;2001年04期
6 陈盛;史伟民;金晶;秦娟;王漪;夏义本;;激光晶化非晶硅薄膜的表面机理研究[J];功能材料与器件学报;2010年06期
7 林鸿溢;非晶硅薄膜表面与非晶须特性[J];材料科学进展;1990年03期
8 徐二明;袁超;王俊平;霍浩磊;梁二军;;532nm连续激光晶化非晶硅薄膜的原位拉曼光谱研究[J];光散射学报;2008年03期
9 伞振雷;谢建生;李金华;;室温非晶硅薄膜热电阻温度系数研究[J];常州大学学报(自然科学版);2012年03期
10 毛友德;;非晶硅薄膜用于半导体器件表面钝化的初步研究[J];贵金属;1981年04期
相关会议论文 前10条
1 陈一匡;林揆训;罗志;梁锐生;周甫方;;铝诱导非晶硅薄膜的场致低温快速晶化[A];21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集[C];2003年
2 马占洁;陈光华;何斌;刘国汉;朱秀红;张文理;李志中;郜志华;宋雪梅;邓金祥;;影响氢化非晶硅薄膜光衰退稳定性的因素[A];TFC'05全国薄膜技术学术研讨会论文摘要集[C];2005年
3 马占洁;陈光华;何斌;刘国汉;朱秀红;张文理;李志中;郜志华;宋雪梅;邓金祥;;氢化非晶硅薄膜光衰退稳定性的影响因素[A];全国薄膜技术学术研讨会论文集[C];2006年
4 何文;成惠峰;吴云龙;;非晶硅薄膜及其制备方法研究进展[A];促进科技经济结合,,服务创新驱动发展——蚌埠市科协2012年度学术年会论文集[C];2012年
5 刁宏伟;张世斌;王永谦;廖显伯;孔光临;;稳定优质氢化非晶硅薄膜的研制[A];中国第六届光伏会议论文集[C];2000年
6 章曙东;王永谦;张光春;施正荣;;非晶硅薄膜及太阳电池的高速制备[A];第十届中国太阳能光伏会议论文集:迎接光伏发电新时代[C];2008年
7 林揆训;林璇英;梁厚蕴;池凌飞;余楚迎;石旺舟;姚若河;黄创君;杨坤进;;铝诱导的非晶硅薄膜低温快速晶化[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
8 薛俊明;王宗畔;李洪波;胡景康;赵颖;王庆章;张德坤;耿新华;;111cm×73cm非晶硅薄膜材料的制备[A];中国太阳能学会2001年学术会议论文摘要集[C];2001年
9 廖常庚;郑志豪;汪永强;杨生胜;项金钟;;核反应产额曲线的模拟及非晶硅薄膜中硼的深度分布研究[A];第八届全国核物理会议文摘集(下册)[C];1991年
10 刘毅;宋雪梅;阴生毅;吴越颖;胡跃辉;邓金祥;陈光华;;MWECR CVD制备氢化非晶硅薄膜的微结构研究[A];21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集[C];2003年
相关重要报纸文章 前10条
1 记者 宦建新;10兆瓦非晶硅薄膜电池项目落户杭州[N];科技日报;2007年
2 孙吉晶邋赵科 胡剑军;大型非晶硅薄膜电池项目落户慈溪[N];宁波日报;2007年
3 天轩邋孙人杰 韩晖;一期投产 二期奠基[N];常州日报;2008年
4 本报记者 马明邋通讯员 卞灵霞;强生光电:有望成世界级非晶硅薄膜电池生产商[N];中国工业报;2008年
5 庄俊华;亚洲最大非晶硅薄膜光电项目在大理开建[N];云南日报;2008年
6 蓦妮;非晶硅薄膜太阳能成发展主流[N];中国建设报;2010年
7 特约记者 赵文龙;非晶硅薄膜电池项目落户通辽[N];中国化工报;2010年
8 记者 高一;亚洲最大非晶硅薄膜光电项目落户云南大理[N];上海证券报;2008年
9 尚京云;年产120兆瓦太阳能非晶硅薄膜光电项目奠基[N];大理日报(汉);2008年
10 ;非晶硅薄膜主导太阳能发展[N];21世纪经济报道;2009年
相关博士学位论文 前1条
1 胡跃辉;高速沉积大面积均匀氢化非晶硅薄膜及其优异的光电特性的研究[D];北京工业大学;2005年
相关硕士学位论文 前10条
1 李付贤;P型非晶硅薄膜制备及AZO薄膜表面制绒的研究[D];陕西师范大学;2015年
2 王垠;非晶硅薄膜及其与晶体硅的界面优化研究[D];电子科技大学;2014年
3 陈逢彬;非晶硅薄膜热光特性理论与工艺研究[D];电子科技大学;2015年
4 吴易龙;非晶硅薄膜红外特性与制备工艺研究[D];电子科技大学;2014年
5 段良飞;铝诱导非晶硅薄膜的低温快速晶化研究[D];云南师范大学;2015年
6 陈一匡;铝诱导非晶硅薄膜的场致低温快速晶化[D];汕头大学;2004年
7 段国平;本征非晶硅薄膜的激光晶化研究[D];河南大学;2012年
8 吴茂阳;低阻高TCR非晶硅薄膜制备及性能研究[D];电子科技大学;2011年
9 杨晟;金属诱导非晶硅薄膜低温晶化研究[D];武汉理工大学;2006年
10 潘震;氢化非晶硅薄膜的直流和射频磁控溅射法制备及其表征[D];武汉理工大学;2009年
本文编号:2033519
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2033519.html