Perspective on how laser-ablated particles grow in liquids
本文选题:laser + ablation ; 参考:《Science China(Physics,Mechanics & Astronomy)》2017年07期
【摘要】:Laser ablation in liquids has emerged as a new branch of nanoscience for developing various nanomaterials with different shapes.However, how to design and control nanomaterial growth is still a challenge due to the unique chemical-physical process chain correlated with nanomaterial nucleation and growth, including plasma phase(generation and rapid quenching), gas(bubble) phase,and liquid phase. In this review, through summarizing the literature about this topic and comparing with the well-established particle growth mechanisms of the conventional wet chemistry technique, our perspective on the possible nanoparticle growth mechanisms or routes is presented, aiming at shedding light on how laser-ablated particles grow in liquids. From the microscopic viewpoint, the nanoparticle growth contains six mechanisms, including LaMer-like growth, coalescence, Ostwald ripening, particle(oriented) attachment, adsorbate-induced growth and reaction-induced growth. For each microscopic growth mechanism, the vivid growth scenes of some representative nanomaterials recorded by TEM and SEM measurements are displayed. Afterwards,the scenes from the macroscopic viewpoint for the large submicro-and micro-scale nanospheres and anisotropic nanostructures formation and evolution from one nanostructure into another one are presented. The panorama of how diverse nanomaterials grow during and after laser ablation in liquids shown in this review is intended to offer a overview for researchers to search for the possible mechanisms correlated to their synthesized nanomaterials, and more expectation is desired to better design and tailor the morphology of the nanocrystals synthesized by LAL technique.
[Abstract]:Laser ablation in liquids has emerged as a new branch of nanoscience for developing various nanomaterials with different shapes.However, how to design and control nanomaterial growth is still a challenge due to the unique chemical-physical process chain correlated with nanomaterial nucleation and growth, including plasma phase(generation and rapid quenching), gas(bubble) phase,and liquid phase. In this review, through summarizing the literature about this topic and comparing with the well-established particle growth mechanisms of the conventional wet chemistry technique, our perspective on the possible nanoparticle growth mechanisms or routes is presented, aiming at shedding light on how laser-ablated particles grow in liquids. From the microscopic viewpoint, the nanoparticle growth contains six mechanisms, including LaMer-like growth, coalescence, Ostwald ripening, particle(oriented) attachment, adsorbate-induced growth and reaction-induced growth. For each microscopic growth mechanism, the vivid growth scenes of some representative nanomaterials recorded by TEM and SEM measurements are displayed. Afterwards,the scenes from the macroscopic viewpoint for the large submicro-and micro-scale nanospheres and anisotropic nanostructures formation and evolution from one nanostructure into another one are presented. The panorama of how diverse nanomaterials grow during and after laser ablation in liquids shown in this review is intended to offer a overview for researchers to search for the possible mechanisms correlated to their synthesized nanomaterials, and more expectation is desired to better design and tailor the morphology of the nanocrystals synthesized by LAL technique.
【作者单位】: Key
【基金】:supported by the National Key Basic Research Program of China (Grant No. 2014CB931704) the National Natural Science Foundation of China (Grant No. 11304315, 51401206, 11404338, 51371166, 51571186, and 11504375) the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams
【分类号】:TB383.1;TN249
【相似文献】
相关期刊论文 前6条
1 沈建国;张宏敏;;A method for visualizing sound propagation in solids and liquids[J];Acta Seismologica Sinica(English Edition);2006年06期
2 MURAYAMA Koichi;;Capillary method for measuring near-infrared spectra of microlitre volume liquids[J];Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal);2007年02期
3 王小松;朱如曾;;Relation between Tolman length and isothermal compressibility for simple liquids[J];Chinese Physics B;2013年03期
4 邓海东;孙婷;赵韦人;符志成;戴峭峰;吴立军;兰胜;Achanta Venu Gopal;;Response of colloidal liquids containing magnetic holes of different volume densities to magnetic field characterized by transmission measurement[J];Chinese Physics B;2010年10期
5 王丽娜;赵兴宇;张丽丽;黄以能;;Simulations of the flipping images and microparameters of molecular orientations in liquids according to the molecule string model[J];Chinese Physics B;2012年08期
6 ;[J];;年期
,本文编号:2057696
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2057696.html