当前位置:主页 > 科技论文 > 材料论文 >

基于次磷酸铝阻燃室温硫化硅橡胶复合材料的燃烧性能研究

发布时间:2018-06-26 10:18

  本文选题:硅橡胶 + 次磷酸铝 ; 参考:《青岛科技大学》2015年硕士论文


【摘要】:硅橡胶作为发展速度最快的合成材料之一,由于其优异的热稳定性、低温韧性以及绝缘性被广泛应用于各个领域,尤其是在电子电气产品方面。然而,硅橡胶易燃的特点极大限制了其在某些领域的应用。所以有必要对硅橡胶添加阻燃剂以改善其阻燃性能。次磷酸盐类化合物作为一种环境友好型的无卤阻燃剂正迅速发展。其功能不同于其他无机材料和卤代化合物阻燃剂,而是通过催化形成致密的炭化层,保护内部材料不被进一步燃烧,同时抑制了有毒气体的释放。但是,次磷酸盐仍然存在阻燃效率不高的问题,采用协同阻燃技术有望进一步提高其阻燃效率。为此,本文采用次磷酸铝(AHP)为阻燃剂,可膨胀石墨(EG)、空心玻璃微球(HGM)、铁红(Fe203)、铁黄(FeOOH)和二茂铁(Fer)作为协效剂,通过混炼的方法制备阻燃硅橡胶复合材料,并使用锥形量热仪(CCT)、热重分析仪(TGA)和红外光谱仪(FT-IR)对复合材料的燃烧性、热稳定性和挥发产物进行了研究。主要包括以下内容:(1)通过CCT、TGA和FT-IR对EG协效AHP阻燃SR复合材料及燃烧特性进行研究。CCT结果表明,AHP可以增强SR材料的阻燃性,EG对SR/AHP复合材料有显著的协效阻燃作用。20wt%的AHP使SR复合材料的PHRR由530kW/m2下降到320kW/m2,残炭率从25%提高到33%。4wt%的EG使SR/AHP复合材料的PHRR下降到192kW/m2,比纯SR样品降低了64%,且残炭率提高到48%。炭渣照片显示,AHP使炭层致密,表面完整,EG使SR/AHP复合材料的炭渣膨胀,且炭层更为致密。TGA结果表明,AHP的添加增强了SR复合材料的高温区热稳定性,EG的添加对SR/AHP复合材料的热稳定性有促进作用。20wt%的AHP使SR复合材料的初始分解温度由390℃降低到339℃,最终残炭量从22.3%提升到52.3%,复合材料的热降解阶段由一个增加到两个。4wt%的EG使SR/AHP复合材料的60%质量损失温度从480℃提高到523℃,残炭率从52.3%提高到57.6%。挥发产物的FT-IR结果显示,EG和AHP使SR复合材料在3000-2800,2400-2300和1300-750cm-1处的吸收强度降低。说明EG和AHP可抑制SR复合材料在燃烧过程中可燃性气体及二氧化碳的释放。(2)通过CCT、TGA和FT-IR对HGM协效AHP阻燃SR复合材料及燃烧特性进行研究。CCT结果表明,HGM对SR/AHP复合材料有良好的协效阻燃作用。4wt%的HGM使SR/AHP复合材料的PHRR从318kW/m2降低到224kW/m2,1 wt%的HGM使SR/AHP复合材料的残炭率从33%提高到40%。炭渣照片显示,HGM使SR/AHP复合材料的炭渣膨胀,且炭层更为致密。TGA结果表明,HGM对SR/AHP复合材料的热稳定性有促进作用。4wt%的HGM使SR/AHP复合材料的初始分解温度由338℃C提高到350℃,0.5wt%的HGM使SR/AHP复合材料的残炭率从52.6%提高到55.1%。挥发产物的FT-IR结果表明,HGM使SR复合材料在3000-2800,2400-2300和1300-750cm-1处的吸收强度降低。说明HGM可抑制SR/AHP复合材料在燃烧过程中可燃性气体及二氧化碳的释放。(3)通过CCT、TGA和FT-IR分别对Fe2O3、FeOOH和Fer协效AHP阻燃SR复合材料及燃烧特性进行研究。CCT结果表明,3. FeOOH和Fer均对SR/AHP复合材料有协效阻燃效果。4wt%的Fe2O3使SR/AHP复合材料的PHRR由318kW/m2降低到183kW/m2,残炭率从33%提高到50%;4wt%的FeOOH使SR/AHP复合材料的PHRR由318kW/m2下降到198kW/m2,残炭率从33%提高到47%;0.5wt%的Fer可使SR/AHP复合材料的PHRR由318kW/m2下降到172kW/m2,当Fer的含量达到4wt%时,SR/AHP复合材料的残炭率由31%提升到56%。通过对比,三种铁系化合物中Fer对SR/AHP具有较好的协效阻燃作用。TGA结果显示,4wt%的Fe2O3使SR/AHP复合材料的初始分解温度由330℃降低到322℃,其残炭量对比SR/AHP复合材料也有所下降,由52.4%下降到46.7%;4wt%的FeOOH使SR/AHP复合材料的初始分解温度上升到363℃,最终残炭率下降到51.4%:4wt%的Fer没有对SR/AHP复合材料的初始分解温度造成影响,但其残炭率下降了5.9个百分点。以上结果与Mass结果相矛盾,这是样品的规模效应造成的,由于TGA取样质量过小,协效剂的含量增多并没有对复合材料的热稳定性显现改善效果。挥发产物的FT-IR结果表明,三种铁系化合物均可使SR/AHP复合材料在3000-2800,2400-2300和1300-750cm-1处的吸收强度降低,其中Fer的效果最为明显。说明Fer比Fe203和FeOOH对于抑制SR/AHP复合材料在燃烧过程中释放可燃性气体及二氧化碳的效果更好。
[Abstract]:As one of the fastest growing synthetic materials, silicone rubber is widely used in various fields because of its excellent thermal stability, low temperature toughness and insulation, especially in electronic and electrical products. However, the flammability of silicone rubber restricts its application in some fields. Therefore, it is necessary to add flame retardants to silicone rubber. In order to improve its flame retardancy, the hypophosphite is developing rapidly as an environmentally friendly halogen free flame retardant. Its function is different from other inorganic materials and halogenated flame retardants, but by catalyzing the formation of compact carbonization layer, protecting the internal materials from further combustion and inhibiting the release of toxic gases. It is a problem that hypophosphite still has low flame retardancy efficiency, and it is expected to further improve its flame retardancy efficiency by using synergistic flame retardancy technology. Therefore, this paper uses aluminum hypophosphite (AHP) as flame retardant, expansible graphite (EG), hollow glass microsphere (HGM), iron red (Fe203), iron yellow (FeOOH) and two ferrocene (Fer) as synergist, by mixing method The flame retardant, thermal stability and volatilization products of the composites were studied by conical calorimeter (CCT), thermogravimetric analyzer (TGA) and infrared spectrometer (FT-IR). The main contents were as follows: (1) the.CCT result table was studied by CCT, TGA and FT-IR for EG co effective AHP flame retardant SR Composites and combustion characteristics. It is clear that AHP can enhance the flame retardancy of the SR material. EG has a significant synergistic effect on the SR/AHP composite with a synergistic flame retarding effect of.20wt%, which reduces the PHRR of the SR composite from 530kW/m2 to 320kW/m2. The carbon residue rate from 25% to 33%.4wt% makes the composite material decrease to 64%, and the carbon residue rate is increased to the carbon residue. The photo shows that AHP makes the carbon layer dense and the surface is complete. EG makes the carbon slag of SR/AHP composites expand and the carbon layer is more compact.TGA. The addition of AHP enhances the thermal stability of the high temperature zone of the SR composite, and the addition of EG promotes the thermal stability of the SR/AHP composite by.20wt% AHP to the initial decomposition temperature of the SR composite material by 39. The final carbon residue was reduced from 0 to 339, and the final carbon residue was increased from 22.3% to 52.3%. The thermal degradation phase of the composite was increased from one to two.4wt% EG to increase the 60% mass loss temperature of SR/AHP composites from 480 to 523, and the carbon residue rate from 52.3% to 57.6%. volatilization product FT-IR fruit. EG and AHP made SR composites in 3000-28002400 The absorption strength of -2300 and 1300-750cm-1 decreases. It shows that EG and AHP can inhibit the release of combustible gas and carbon dioxide in the combustion process of SR composites. (2) the study of HGM co effective AHP flame retardant SR composites and combustion properties by CCT, TGA and FT-IR The HGM of wt% made the PHRR of SR/AHP composite decreased from 318kW/m2 to 224kW/m2,1 wt% HGM, and the carbon residue rate of SR/AHP composite material was increased from 33% to the 40%. carbon slag, and the carbon slag in the SR/AHP composite was expanded and the carbon layer was more compact. The initial decomposition temperature of P composites was increased from 338 C to 350, and HGM of 0.5wt% increased the residual carbon rate of SR/AHP composites from 52.6% to 55.1%. volatilization products. The results showed that HGM reduced the absorption strength of SR composite at 3000-28002400-2300 and 1300-750cm-1. The release of combustible gases and carbon dioxide. (3) the experimental results of Fe2O3, FeOOH and Fer synergistic AHP flame retardant SR composites and combustion properties were studied by CCT, TGA and FT-IR respectively. The rate of 4wt% increased from 33% to 50%; the PHRR of the SR/AHP composite decreased from 318kW/m2 to 198kW/m2, the residual carbon rate increased from 33% to 47%, and Fer of 0.5wt% reduced the PHRR from 318kW/m2 to 172kW/m2. When the content of the composite was reached, the carbon residue rate of the composite was raised from 31% to three ferric systems. The results of a better synergistic flame retardant effect of Fer on SR/AHP showed that the initial decomposition temperature of 4wt% composites decreased from 330 to 322, and the residual carbon content of SR/AHP composites decreased from 52.4% to 46.7%, and 4wt% FeOOH made the initial decomposition temperature of SR/AHP composites up to 363. The loss of the final carbon residue to 51.4%:4wt% Fer did not affect the initial decomposition temperature of the SR/AHP composite, but the carbon residue decreased by 5.9 percentage points. The above results contradict the results of the Mass. This is the result of the scale effect of the sample. As the mass of the sample is too small, the synergist increases and does not heat the composite. The FT-IR results of the volatile products show that the three kinds of iron system compounds can reduce the absorption strength of the SR/AHP composites at 3000-28002400-2300 and 1300-750cm-1, and the effect of Fer is most obvious. It shows that Fer is more effective than Fe203 and FeOOH to release the combustible gas in the combustion process. Carbon dioxide has a better effect.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33

【相似文献】

相关期刊论文 前10条

1 陈建;影响液体酚醛树脂残炭率的因素[J];炭素技术;2003年04期

2 廖华;童仕唐;;合成条件对氨催化酚醛树脂结构的影响[J];热固性树脂;2009年03期

3 陈智琴;刘洪波;何月德;陈鸯飞;;高残炭率酚醛树脂的耐热性能研究[J];工程塑料应用;2006年11期

4 阮胜军;左小华;张世磊;廖庆玲;;改性热塑性酚醛树脂的制备及残炭率的影响因素[J];中国胶粘剂;2012年12期

5 俞晓东;张雪松;杨建国;水恒福;朱燕青;;热塑性酚醛树脂残炭率的影响因素研究[J];中国胶粘剂;2013年10期

6 智林杰,宋进仁,刘朗;高残炭率浸渍剂沥青的组成设计[J];新型炭材料;2001年01期

7 翟树军;孙本岗;郭保金;;氮肥生产节煤降耗的运行分析[J];广东化工;2012年07期

8 秦军;金翠霞;于杰;黄旭;田瑶珠;胡智;;PA6含量对HDPE/PA6/MRP合金性能影响的研究[J];工程塑料应用;2009年05期

9 雷世文;张东卿;郭全贵;史景利;刘朗;宋进仁;;提高酚醛基纤维耐热性的表面处理方法[J];材料工程;2007年S1期

10 肖志英;蒋建纯;周九宁;;正交法选择COPNA树脂的最佳合成条件[J];炭素;2006年01期

相关会议论文 前1条

1 张衍;刘育建;王井岗;何琪;韩哲文;;溶剂对酚醛树脂分子链形态及热解性能的影响[A];第十五届全国复合材料学术会议论文集(上册)[C];2008年

相关硕士学位论文 前4条

1 宋文奎;基于次磷酸铝阻燃室温硫化硅橡胶复合材料的燃烧性能研究[D];青岛科技大学;2015年

2 沈红;杯芳烃改性低粘度高残炭酚醛树脂的研究[D];四川大学;2004年

3 BAKANGURA ERIGENE;[D];华南理工大学;2013年

4 陈苏锋;含炔基树脂的合成、表征及其复合材料的研究[D];合肥工业大学;2013年



本文编号:2070048

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2070048.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户75a7f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com