柔性高迁移率氧化锌基TCO薄膜及其在钙钛矿电池中应用
本文选题:透明导电薄膜 + 氧化锌 ; 参考:《济南大学》2015年硕士论文
【摘要】:透明导电氧化物薄膜是新型光电薄膜中极为重要的一类,其在太阳光谱可见光范围内透明,对红外光有较强的反射,且电导率较大,因而是一种比较理想的透明电极材料,已在太阳能电池、液晶显示器、气体传感器、智能玻璃等领域得到广泛应用。本论文以氧化锌基透明导电薄膜及其在钙钛矿太阳能电池中的应用为研究内容,综合采用脉冲激光沉积技术,热蒸发真空镀膜技术,及水热技术,制备了铝、氟掺杂氧化锌(AZO、FZO)及金属/氧化锌复合薄膜(Cu/FZO、Ag NW/FZO),系统研究了其透明导电性能,并将Ag NW/FZO薄膜应用到钙钛矿电池中,初步研究了其对电池性能的影响。主要研究内容及结果如下:1、研究了PLD法制备的Al、F施主掺杂ZnO(AZO、FZO)薄膜的透明导电性能。以含有IIIA族/VII族元素(Al、F等)的化合物为施主掺杂剂对氧化锌靶材进行掺杂,研究了PLD生长条件,如掺量、气压、温度等,对AZO、FZO薄膜生长及透明导电性能的影响。最优生长条件下,玻璃衬底上AZO薄膜电阻率为2.6×10-4Ω?cm,对应的载流子浓度为8.4×1020cm-3,霍尔迁移率28.5cm2/Vs,在可见光范围内的透光率超过85%。在PET衬底上FZO薄膜最优电阻率为2.02×10-3Ω?cm,对应的载流子浓度为2.47×1020cm-3,霍尔迁移率达到12.5 cm2V-1s-1,透过率超过90%。2、综合利用PLD法和热蒸发法制备了柔性Cu/FZO复合薄膜,并研究了其透明导电机理。在柔性衬底上沉积不同厚度铜膜,在其上生长一层FZO薄膜形成Cu/FZO复合薄膜。系统研究了金属铜层厚度对复合薄膜的性能的影响。实验发现,随着铜层厚度的增加(3→50 nm),Cu/FZO复合薄膜电阻率不断减小(4×10-3→2.2×10-5Ω?cm),其透过率会随之下降(80%→5%)。霍尔效应结果证实,复合薄膜电阻率下降主要是由于薄膜载流子浓度的增加,这是由于费米能级的不同,铜层和FZO层接触时,电子从铜层流向FZO层引起的。3、综合利用PLD法和水热法制备了柔性Ag NW/FZO复合薄膜。研究了银纳米线的长度、旋涂工艺对单层Ag NW薄膜透明导电性能的影响。实验发现,长银纳米线(约60 um)比短银纳米线(约15 um)更适合制备透明导电薄膜;当悬浮液浓度为4 mg/m L时,银纳米线薄膜面电阻为19.2欧姆/平方,透光率达到90.14%,高于ITO(89.8%)。Ag NW薄膜复合FZO层后在保持其透明导电性能的同时,还具有较高的雾度(36.5%-38%),其机械性能也有所提高。4、将具有高透明导电性能、高雾度的Ag NW/FZO复合薄膜应用到钙钛矿薄膜电池。采用两步法组装了具有Ag NW/FZO|TiO2|甲胺铅碘|HTM|金属电极结构的钙钛矿电池,初步探索了电池器件的制备工艺。Ag NW/FZO电极与传统的FTO电极相比,钙钛矿电池效率从2.95%提高到4.1%,主要是由于Ag NW/FZO电极具有较高的雾度,增加了光程,提高了光的利用率。
[Abstract]:Transparent conductive oxide thin film is an important kind of new optoelectronic thin film. It is transparent in visible range of solar spectrum, has strong reflection to infrared light, and has high conductivity, so it is an ideal transparent electrode material. Has been widely used in solar cells, liquid crystal displays, gas sensors, smart glass and other fields. In this paper, zinc oxide based transparent conductive thin films and their applications in perovskite solar cells were studied. Aluminum was prepared by pulsed laser deposition, thermal evaporation vacuum coating and hydrothermal technology. The transparent conductive properties of fluorine-doped zinc oxide (AZO) and metal / zinc oxide composite films (Cu / FZO / Ag NW / FZO) were systematically studied. The effects of Ag NW / FZO thin films on the performance of perovskite batteries were studied. The main contents and results are as follows: 1. The transparent conductivity of Alf donor-doped ZnO (AZOOFZO) thin films prepared by PLD method is studied. Zinc oxide targets were doped with compounds containing IIIA / VII group elements (Alf, et al.) as donor dopants. The effects of PLD growth conditions, such as volume, air pressure and temperature, on the growth and transparent conductivity of AZOFZO thin films were investigated. Under the optimum growth conditions, the resistivity of AZO thin films on glass substrates is 2.6 脳 10 ~ (-4) 惟 ~ (-1) cm, corresponding carrier concentration is 8.4 脳 10 ~ (20) cm ~ (-3), Hall mobility is 28.5 cm ~ (2) / V _ s, and the transmittance is over 85 cm ~ (-2) in the visible range. The optimum resistivity of FZO thin films on PET substrates is 2.02 脳 10-3 惟 路cm, corresponding carrier concentration is 2.47 脳 1020cm-3, Hall mobility is 12.5 cm2V-1s-1 and transmittance is over 90.2.The flexible CuFZO composite films have been prepared by PLD method and thermal evaporation method, and their transparent conductive mechanism has been studied. Copper films with different thickness were deposited on flexible substrates, on which a layer of FZO thin films was grown to form Cu / FZO composite films. The effect of the thickness of copper layer on the properties of the composite film was systematically studied. It is found that the resistivity of Cu / FZO composite films decreases with the increase of copper thickness (3 ~ 50 nm) (2. 2 脳 10 ~ (-5) 惟 路cm ~ (-1), and the transmittance decreases (80% ~ 5%) with the increase of copper layer thickness (3 ~ 50 nm). The Hall effect results show that the decrease in resistivity of composite films is mainly due to the increase of carrier concentration in the films, which is due to the difference of Fermi energy levels when the copper layer and the FZO layer are in contact with each other. Flexible Ag NW / FZO composite films were prepared by PLD method and hydrothermal method. The effects of the length of silver nanowires and the spin-coating process on the transparent conductivity of Ag NW thin films were investigated. It was found that long silver nanowires (about 60um) were more suitable than short silver nanowires (about 15um) to prepare transparent conductive films, and the surface resistance of silver nanowires was 19.2 ohm / square when suspension concentration was 4 mg/m / L. The transmittance reached 90.14, which is higher than that of ITO (89.8%). Ag-NW thin film composite FZO film, while keeping its transparent conductivity, it also has a higher fog (36.5% -38%), and its mechanical property is also improved .4, which will have high transparent conductivity. High foggy Ag NW / FZO composite thin films are applied to perovskite thin film batteries. Perovskite batteries with the structure of Ag-NW / FZO / FZO / Ag-NW / FZO / HTM metal electrode were fabricated and compared with the conventional FTO electrode. The efficiency of perovskite cell is increased from 2.95% to 4.1, mainly due to the high fog of Ag NW / FZO electrode, which increases the optical path and the utilization rate of light.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB383.2
【共引文献】
相关期刊论文 前3条
1 刘作莲;王文j;杨为家;林云昊;钱慧荣;周仕忠;李国强;;脉冲激光沉积GaN薄膜的研究进展[J];半导体光电;2014年04期
2 周强;王俊波;邱荣;田润妮;杨永佳;蒋勇;;纳秒激光诱导熔石英玻璃损伤的超快诊断[J];中国激光;2014年03期
3 彭丽勇;林家新;唐鹏;郭亮;张庆茂;;0Cr18Ni9不锈钢飞秒激光烧蚀特性的研究[J];激光与光电子学进展;2014年07期
相关博士学位论文 前3条
1 黄浩亮;Sm_(0.6)Nd_(0.4)NiO_3/LaAlO_3异质外延薄膜中的金属绝缘体转变[D];中国科学技术大学;2014年
2 尹少骞;Co基合金垂直磁各向异性薄膜的研究[D];北京科技大学;2015年
3 李伟伟;多铁性Eu_(0.5)Ba_(0.5)TiO_3薄膜物性研究[D];苏州大学;2015年
相关硕士学位论文 前10条
1 蒋波;BCT铁电薄膜和纳米纤维晶体管的制备及性能研究[D];湘潭大学;2012年
2 张鹏;激光烧蚀CVD生长氧化锌基纳米结构及光学性质研究[D];济南大学;2013年
3 吴玉婷;基于激光场分布的纳秒激光诱导亚波长条纹机理的研究[D];武汉理工大学;2013年
4 邱智文;受主掺杂氧化锌纳米线的激光烧蚀生长与器件应用研究[D];济南大学;2014年
5 周强;飞秒激光烧蚀熔石英光学元件的超快动力学研究[D];西南科技大学;2014年
6 邰佳丽;脉冲激光沉积法制备Mg_xZn_(1-x)O_(1-y)S_y四元合金薄膜及其性能研究[D];湖北大学;2014年
7 陈俊;光纤激光修锐树脂CBN砂轮试验研究[D];湖南大学;2014年
8 李乐;248nm准分子激光与三种无机非金属光学材料相互作用研究[D];武汉理工大学;2014年
9 韩f,
本文编号:2111814
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2111814.html