声子晶体缺陷态的温度控制及兰姆波禁带的低频调节
[Abstract]:Because of its rich physical connotation and broad potential application prospects, the research work of phononic crystals has attracted more and more attention of scholars both at home and abroad in the past twenty years. Phononic crystals are periodic composite materials or structures with sonic / elastic band gap characteristics. The basic characteristics of phononic crystals are mainly two: one is When there is a defect state characteristic, when there is a defect in the periodic composite structure, the acoustic / elastic wave within the frequency range of the defect state will be localized at the point defect or along the defect; two is a phonon band gap, which makes the sound wave / elastic wave suppressed in the band gap frequency range, and the sound / elasticity in the other frequency range (through the band range). The wave can be transmitted without loss under the effect of the dispersion relation. The phononic crystal is a new type of artificial periodic structural functional material, which can regulate the frequency of sound waves by human design and control the propagation of sound waves. Therefore, there are many potential applications in real life, for example, for the design of acoustic filters or acoustic waveguides, it can also be used in the design of sound waves. The theoretical research and improvement of phononic crystals are of great value in the field of vibration and noise control. This paper first introduces the related concepts of phononic crystals, expounds the research significance of phononic crystals, and discusses the research status of phononic crystals at home and abroad and some correlation of phononic crystals. Secondly, various methods for calculating the band gap of phononic crystals, their characteristics and the common arrangement of two-dimensional phononic crystals are introduced. The finite element method is introduced emphatically from the Bloch theorem and the basic principles of elastic mechanics, and the basic steps of the numerical simulation of the finite element method are introduced with examples. Then, the temperature pair is introduced in detail. We have proposed two novel models: the first model is obtained by changing the temperature of the central column, and the second model is obtained by changing the central column temperature and rotating the central square column at the 45 degree angle. We get some very important conclusions: for the model one, when the sound is sound When the temperature of the crystal is greater than the Curie temperature, and the defect column temperature is less than Curie temperature, the defect state will appear in the broadband gap, and the lower the temperature of the center defect column, the lower the frequency of the defect mode. For model two, the defect mode will appear in the wide band gap and the number and frequency of the defect mode as long as the phonon crystal temperature is larger than the defect temperature. However, when the temperature of the phononic crystal is lower than the Curie temperature, even if the rotation of the central defect column has broken the original geometric symmetry of the structure, there will still be no vacancy in the wide band gap. We also consider and calculate the central defect column. The results show that the temperature gradient produced by the heat flow around the center of the center is very small and can almost be ignored. Finally, the numerical value of the propagation characteristics of Lamb wave in a two-dimensional phononic plate, which is placed on both sides of the composite plate with a square lattice with a square lattice, is described in detail. Our calculation results show that the relative bandwidth of the two structures is two orders of magnitude higher than that of the two dimensional two component local resonant phononic crystal plate, which is two orders of magnitude higher than that of the two-dimensional three component composite plate rod structure and the three component simple plate composite rod structure. We find that the widening of the relative bandwidth is caused by the coupling between the plate mode and the "double vibrator spring" mode. It effectively enhances the local resonance mechanism. We calculate the elastic wave displacement field well to illustrate the physical mechanism of the low frequency band gap open zone. We also find that the band gap peace belt is very obvious. The innovation of this paper is to propose a novel point defect model and a local resonant phononic crystal plate model. In the field of research, the defect state can be easily obtained without changing the lattice arrangement, the shape of the scatterer, the filling rate, the component material and so on. It is often meaningful. On the premise of not changing the composition of the phononic crystal plate structure, the band gap with larger relative bandwidth is obtained by constructing a new plate model.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33
【相似文献】
相关期刊论文 前10条
1 温激鸿,刘耀宗,郁殿龙,王刚,赵宏刚;基于散射单元的声子晶体振动带隙研究[J];人工晶体学报;2004年03期
2 温激鸿,刘耀宗,王刚,赵宏刚;声子晶体弹性波带隙理论计算及实验研究[J];功能材料;2004年05期
3 郁殿龙,刘耀宗,邱静,王刚,温激鸿,赵宏刚;一维声子晶体振动特性与仿真[J];振动与冲击;2005年02期
4 赵宏刚,刘耀宗,温激鸿,韩小云;心材密度及弹性模量对二维局域共振型声子晶体声波禁带的影响[J];材料科学与工程学报;2005年05期
5 黄小益,彭景翠,张高明,翦之渐;声子晶体中弹性波带隙与散射[J];功能材料;2005年02期
6 李晓春;易秀英;肖清武;梁宏宇;;三组元声子晶体中的缺陷态[J];物理学报;2006年05期
7 王留运;熊滨生;王兴;;任意散射体二维声子晶体的带结构计算方法[J];郑州大学学报(工学版);2006年02期
8 王文刚;刘正猷;赵德刚;柯满竹;;声波在一维声子晶体中共振隧穿的研究[J];物理学报;2006年09期
9 塔金星;;21世纪最具潜力的新型带隙材料——声子晶体[J];现代物理知识;2006年05期
10 曾广武;肖伟;程远胜;;多组声子晶体复合结构的隔声性能[J];振动与冲击;2007年01期
相关会议论文 前10条
1 王健君;;通过组装胶体颗粒实现特超声子晶体[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
2 陈久久;秦波;程建春;;二维表面波声子晶体的研究[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
3 许震宇;沈琦;龚益玲;;一维声子晶体的数值和实验研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
4 刘晓峰;汪越胜;;夹层声子晶体板的缺陷态研究[A];中国力学大会——2013论文摘要集[C];2013年
5 吴英家;方庆川;凡友华;;新型声学材料——声子晶体的低频高效隔声性能研究[A];中国环境科学学会2009年学术年会论文集(第二卷)[C];2009年
6 徐伟;汪越胜;;二维声子晶体的等效非局部连续介质模型[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
7 刘耀宗;孟浩;李黎;温激鸿;;基于遗传算法的声子晶体梁振动传输特性优化设计[A];第九届全国振动理论及应用学术会议论文集[C];2007年
8 祝雪丰;阚威威;程建春;;采用超晶格平面波展开和谐频响应法对硅基兰姆波声子晶体的研究[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
9 周小微;程建春;;二维声子晶体中低频弹性波传播的有效速度[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
10 汪越胜;;声子晶体波传播特性的参数表征及计算方法[A];中国力学学会学术大会'2009论文摘要集[C];2009年
相关重要报纸文章 前1条
1 记者 张建列 通讯员 冯春;利用声波实现“隔空探物”[N];广东科技报;2014年
相关博士学位论文 前10条
1 邓科;声子晶体及声超常材料的特性调控与功能设计[D];武汉大学;2010年
2 肖伟;声子晶体型周期复合结构禁带特性研究[D];华中科技大学;2007年
3 顾永伟;局域共振声子晶体的优化设计与模拟[D];上海交通大学;2009年
4 蔡力;声子晶体弹性波传播特性研究[D];国防科学技术大学;2008年
5 赵寰宇;二维阿基米德格子声子晶体特性研究[D];北京工业大学;2011年
6 李凤莲;计算二维声子晶体带隙及响应谱的边界积分方程法研究[D];北京交通大学;2011年
7 刘军;高Q声子晶体声波传感机理及实验研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
8 付志强;一维/准一维变截面声子晶体的研究及在功率超声中的应用[D];陕西师范大学;2013年
9 魏瑞菊;基于对称性的二维声子晶体带隙特性研究[D];北京工业大学;2011年
10 王刚;声子晶体局域共振带隙机理及减振特性研究[D];国防科学技术大学;2005年
相关硕士学位论文 前10条
1 王海洋;二维组合声子晶体薄板振动性能研究[D];哈尔滨工业大学;2008年
2 沈耀辉;二维三组元局域共振型声子晶体稳态响应研究[D];哈尔滨工业大学;2010年
3 邱春印;二维声子晶体的层间多重散射理论及声子晶体相关的应用设计[D];武汉大学;2005年
4 冯昆;二维三组元声子晶体低频稳态响应探究[D];哈尔滨工业大学;2011年
5 王连坤;用于声子晶体检测的光外差测量技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
6 武维维;一维声子晶体透射谱的理论研究[D];华中科技大学;2011年
7 徐永刚;周期与非周期性一维声子晶体能带特性研究[D];陕西师范大学;2013年
8 胡爱珍;声子晶体缺陷态的温度控制及兰姆波禁带的低频调节[D];广东工业大学;2015年
9 籍夫建;外场对声子晶体梁弯曲振动带隙特性影响研究[D];国防科学技术大学;2007年
10 柳天宇;一维压电声子晶体热输运性质的理论研究[D];天津大学;2008年
,本文编号:2171867
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2171867.html