金属纳米结构表面的可控制备及其在光学检测中的应用
[Abstract]:Surface plasmon resonance (SPR) properties of metal nanostructures can be simply understood as the collective oscillation of free electrons driven by the electric field of incident light relative to the metal ion skeleton. SPR properties are strongly dependent on metal nanoparticles. Based on the highly adjustable SPR properties and the accompanying local electromagnetic field enhancement phenomena, nano-scale metal structures have shown broad application prospects in many fields such as sensors, surface enhancement spectroscopy, energy conversion and so on. For example, in the field of optical detection, many reported SPR sensors are usually used to detect the formant of a wide range, except for the limitation of sensitivity. This leads to the lack of spectral resolution of the sensor, which is not conducive to the detection of the concentration pole. The homogeneity of SERS substrate also limits the role of many highly active substrates in testing, especially in quantitative testing. Although some of the problems caused by structural defects, including the above, can usually be solved by high-precision "top-down" technical means to optimize the structure, but For these reasons, a series of high-performance optical detectors based on metal nanostructures have been fabricated by rational design, high-efficiency and low-cost colloid etching and electrostatic self-assembly techniques. In the second chapter, a high performance SPR sensor based on a simple two-dimensional silver nanowell array is fabricated by using colloid etching technique. The structure of the sensor can be regarded as an ordered array of silver nanoholes bonded to a flat silver film. On the premise of following Bragg diffraction condition, the surface plasmon plaritons (SPPs) are formed by coupling with metal surface more efficiently. Meanwhile, the enhanced electromagnetic field caused by SPPs is completely located at the interface between nano-well and air, which can ensure that the change of environment is fully perceived and avoid the negative effect of substrate effect. The geometric parameters of the nanowells can be easily adjusted to optimize the performance of the sensors by using flexible colloid etching technology. We first optimize the pore size and depth of the nanowells by changing the dry etching time and the first deposited metal thickness, and then obtain a strong and sharp peak shape. The coupling effect between SPPs and Rayleigh singularity is very important for reducing the half-peak width. In addition, the refractive index sensitivity of the sensor can be improved by increasing the lattice constant of the array with a larger size of colloidal microsphere mask. At the same time, we have carried out a precise electromagnetic simulation to verify the reliability of the experimental results. The optimized samples have high refractive index sensitivity and very narrow half-peak width, making them high-sensitivity and high-resolution SPR sensors. The final immune test shows that the optimized silver nanowell array can be used as an excellent platform for biomolecular detection. On this basis, we construct different thickness dielectric layers between silver film and nanopore array, and then derive a silver nanopore array-dielectric layer-silver film sandwich composite structure. In the third chapter, we use electrostatic self-assembly of charged metal nanospheres. A highly active and homogeneous SERS substrate based on metal nanoparticle-nanopore hybrid structure array was fabricated by combining metal vertical deposition method. In order to achieve a high degree of homogeneity, we designed the gold nanospheres from the following three aspects. Firstly, the gold nanospheres used in this chapter were prepared by seed growth method, with regular morphology and excellent monodispersity, which made the size of the annular nano-gap more uniform. Secondly, the lower ionic strength made them adsorbed by electrostatic gravity. Finally, although the gold nanospheres are not aligned in a long-range order on the substrate, they are evenly distributed, so at any location, the circular spot of the laser illuminates the annular gap. Based on the above four conditions, the surface of the metal nanoparticles-nanoporous hybrid structure can have both excellent enhancement effect and homogeneity. In addition, the method used in this chapter is simple, low cost, and can achieve large-area preparation, which makes our method has great advantages in practical application. In Chapter 4, we developed a simple method to fabricate two-dimensional gold nanoparticle arrays with highly tunable particle spacing and optical properties, which can be easily integrated in a gradient form on a substrate. The charge density modulation takes advantage of the rheological properties of the polymer. After the electroneutral polystyrene (ps) film is treated by oxygen plasma, polar oxygen-containing groups are formed on the surface to enable electrostatic adsorption. Groups tend to move away from the film-air interface and into the PS film to reduce surface energy. Thus, the PS film treated by oxygen plasma can be annealed at different temperatures, and the surface with different charge densities can be obtained by layer-by-layer electrostatic self-assembly. Gold nanoparticle arrays with the same particle spacing and optical properties. Due to the important influence of particle spacing on local surface plasmon resonance (LSPR) coupling, the samples with different particle spacing also exhibit a high degree of spectral tunability. There are multiple resonance modes in the spectrum, which can support multiple SERs for wavelength selection. S-signal is advantageous for matching LSPR resonance bands, excitation wavelengths, and measured objects. In the annealing process, a large area of two-dimensional metal nanoparticle arrays with gradient particle spacing and spectrum can be easily fabricated by using a heat source with a surface temperature gradient. The gradient surface can be used as a "library" for specific applications. Our method is simple, universal, and can be prepared in large areas without any expensive and precise instruments, so it is suitable for ordinary laboratories and large-scale production.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 饶艳英;钱卫平;;有序金属纳米壳材料[J];化学进展;2011年12期
2 满石清;樊耘;汤俊琪;;帽状金属纳米结构的制备、性质及应用[J];暨南大学学报(自然科学与医学版);2012年05期
3 ;世界首次利用金属纳米结构的光纳米成像技术[J];吉林农业农村经济信息;2006年02期
4 孟庆平,戎咏华,徐祖耀;金属纳米晶的相稳定性[J];中国科学E辑:技术科学;2002年04期
5 黄川;宋晓艳;魏君;韩清超;;金属纳米晶热稳定性的计算机仿真与实验研究[J];中国体视学与图像分析;2008年03期
6 李志远;李家方;;金属纳米结构表面等离子体共振的调控和利用[J];科学通报;2011年32期
7 金翼水;刘辅庭;;高功能性金属纳米纤维的制造及其性能评估[J];合成纤维;2011年10期
8 杨国桢;;评《金属纳米结构表面等离子体共振的调控和利用》[J];科学通报;2012年Z1期
9 黄敏;杨修春;赵建富;顾幸勇;梁华银;钱士雄;;银铜双金属纳米晶玻璃复合材料光学三阶非线性的研究[J];中国陶瓷工业;2012年05期
10 张治平;张亚文;;可控形貌的双金属纳米晶催化剂的研究进展[J];大学化学;2013年05期
相关会议论文 前10条
1 王仲珏;;金属纳米变质技术新进展[A];2010年中国铸造活动周论文集[C];2010年
2 李志远;;金属纳米微结构和颗粒的表面等离子体共振[A];中国光学学会2006年学术大会论文摘要集[C];2006年
3 黄川;宋晓艳;魏君;韩清超;;金属纳米晶热稳定性的计算机仿真与实验研究[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
4 李亚栋;;金属纳米催化[A];第六届全国物理无机化学会议论文摘要集[C];2012年
5 李亚栋;;金属纳米催化[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年
6 宋晓艳;张久兴;李乃苗;高金萍;杨克勇;刘雪梅;;金属纳米晶和纳米粒子材料热力学特性的模拟计算与实验研究[A];2005年全国计算材料、模拟与图像分析学术会议论文集[C];2005年
7 王树林;李生娟;杜妍辰;徐波;李来强;朱岩;;金属纳米结构的干法室温大规模制备[A];第八届全国颗粒制备与处理学术和应用研讨会论文集[C];2007年
8 吴炳辉;陈光需;代燕;郑南峰;;贵金属纳米晶的表界面调控[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年
9 郭霞;张巧;叶伟;谢芳;赵清;杨剑;;金基纳米棒的选择性腐蚀制备新颖多金属纳米结构[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
10 童明良;刘俊良;冷际东;郭鹏虎;;系列4f/3d-4f金属纳米分子磁体的组装与磁-构关系研究[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年
相关重要报纸文章 前3条
1 本报记者 危丽琼;双金属纳米簇催化剂“1+1>2”[N];中国化工报;2013年
2 张巍巍;美开发出高度控制金属纳米结构的方法[N];科技日报;2012年
3 记者 毛黎;碳纳米管与金属纳米导线成功连接[N];科技日报;2007年
相关博士学位论文 前10条
1 孙明斐;异常一维金属纳米结构弹性及塑性的分子动力学模似表征[D];复旦大学;2014年
2 李楠庭;石墨烯负载金属纳米结构的制备及性能表征[D];南京大学;2015年
3 宋玮;多肽/金属纳米簇的制备及其用于生物分析检测研究[D];南昌大学;2015年
4 伍铁生;基于金属纳米结构的光传输特性及其应用研究[D];北京邮电大学;2015年
5 王超;Ir基贵金属纳米晶制备及其催化性质研究[D];吉林大学;2016年
6 武振楠;基于金属纳米点的超薄二维组装结构构筑[D];吉林大学;2016年
7 吴菲菲;金属纳米结构的构筑及其在传感中的应用[D];吉林大学;2016年
8 程毅;液相基底表面金属纳米结构形成机理的计算机模拟[D];浙江大学;2016年
9 张亚芳;金属纳米结构对染料分子和稀土离子光学性质的调控[D];武汉大学;2016年
10 马宗伟;金属纳米棒阵列的三阶光学非线性和光致发光特性研究[D];华中科技大学;2016年
相关硕士学位论文 前10条
1 祝国民;原位液体透射电镜芯片的研发及基于此技术的贵金属纳米晶生长和刻蚀研究[D];浙江大学;2015年
2 倪媛;贵金属纳米结构的可控合成及其光热效应研究[D];南京航空航天大学;2015年
3 杨荣;贵金属纳米晶合成及其性能研究[D];浙江理工大学;2015年
4 吴佳;基于金属纳米簇的光学分析方法研究[D];陕西师范大学;2015年
5 赵婷;贵金属纳米结构的消光特性研究[D];陕西师范大学;2015年
6 蔡正杰;表面等离激元诱导的金属纳米宽单频带和窄多频带光透明特征研究[D];江西师范大学;2015年
7 韩淑华;中空、多孔贵金属纳米结构的构筑及其机理、性能研究[D];温州大学;2015年
8 沈琪;金属纳米颗粒阵列的局域表面等离激元共振研究[D];南京大学;2014年
9 王婧;金属纳米结构在超宽带电磁波中的局域增强特性及应用研究[D];电子科技大学;2014年
10 刘花;荧光性的金属纳米簇合成及传感性能研究[D];浙江师范大学;2015年
,本文编号:2197606
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2197606.html