钙钛矿铁电氧化物单晶纳米结构的表面、界面及性能研究
[Abstract]:Perovskite ferroelectric single crystal nanostructures have potential applications in the fields of high density storage, energy conversion and catalysis due to their unique physical and chemical properties and ferroelectric surface chemistry. It is of great theoretical and scientific significance to study the regulation and properties of Perovskite Ferroelectric oxides. Firstly, the structural characteristics of Perovskite Ferroelectric oxides are briefly summarized. The structural characteristics of Perovskite Ferroelectric oxides, the ferroelectric surface chemistry caused by spontaneous polarization and shielding, and the single domain stability of perovskite phase PbTi03 (PTO) nanostructures are summarized and analyzed. The preparation and research status of ferroelectric oxide nanostructures are discussed. Especially, the regular facets of Perovskite Ferroelectric nanocrystals, ferroelectric surface chemistry, the influence of iron electrode on gas adsorption, noble metal growth and catalytic performance are discussed and summarized in detail. In this paper, perovskite PTO polyhedron nanostructures and STO/PTO nanocomposites with regular geometry shapes were prepared by hydrothermal method and solid state reaction method, respectively. The main contents and results of this dissertation are as follows: (1) Inorganic salt ions are used in the preparation of non-magnetic perovskite oxides. Perovskite PTO single crystal nanocrystals (PT OCT) with regular facets and smooth octahedral morphology were successfully prepared by assisted hydrothermal method for the first time. The size of PT OCT nanocrystals was 50-100 nm, and the exposed surface was {111} crystal plane. The Curie temperature was 485.56 C. The results of HAADF-STEM and STEM-EELS showed that there was Li in the surface layer of PT OCT single crystal nanocrystals ~2 nm. Li-O bond was formed by the combination of Li and 0, and the existence of Li-O bond was an important factor for the stability of {111} crystal plane of PT OCT single crystal nanocrystals. (2) It was found that the growth of PT OCT single crystal nanocrystals was oriented aggregation growth mode (OA) mechanism, that is, the formation of tetragonal perovskite in the early stage of hydrothermal reaction. The size of PT nanoparticles with mineral structure is about 2-4 nm. The nanoparticles gradually gather together under the combined action of electrostatic force, Li+ action and van der Waals force. During the growth process, the orientation of the grains is adjusted continuously to reduce the surface energy, and the octahedral morphology of PT single crystal nanocrystals is finally formed. When the octahedral morphology was basically formed, Li+ gradually migrated from the octahedral to the surface through diffusion, and finally aggregated on the crystal surface to stabilize the PT OCT {111} crystal plane. (3) Visible light photocatalysis showed that PT OCT single crystal nanocrystals were excellent photocatalysts with a complete degradation concentration of 10 minutes or so. UV absorption spectra show that the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm), and the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm) in the range of 500-700 nm. On the other hand, low-temperature electron paramagnetic resonance (ESR) studies show that the presence of Ti3+ in PT OCT single crystal nanocrystals may lead to the formation of localized states in the band structure, reduce the band gap of PT OCT nanocrystals, enhance the absorption of visible light band, and make PT OCT single crystal nanocrystals have high visible light efficiency. (4) Perovskite PTO truncated octahedral nanocrystals with uniform size and good dispersion were successfully prepared by solid-state reaction for the first time. The results show that the partial melting of Pb304 provides a liquid-phase environment similar to that in solution for homogeneous nucleation-growth of PTO nanocrystals. The size of single crystal PTO nanoparticles in mineral phase is 50-100 nm, with regular crystal planes and octahedral cross-sectional morphology. The main exposed planes are {111} and {01l} with a small number of {100} crystal planes. (5) Pt-PTO nanocomposite structures supported on PTO cross-sectional octahedral nanocrystals were successfully prepared by wet-chemical oxidation-reduction reaction. The structure study shows that single crystal Pt nanocrystals with the size of 3-5 nm selectively grow on the {111] surface of perovskite PTO nanoparticles, and the single crystal Pt nanocrystals have good dispersion and uniform size. CO catalytic oxidation experiments show that the initial temperature of CO conversion to CO2 is 30 C with Pt-PTO nanocrystals as catalyst, and the conversion rate of CO reaches about 50 C. (6) In order to study the kinetics of CO catalysis in Pt-PTO system, Pt single crystal nanoparticles were successfully loaded on perovskite-phase PTO truncated octahedral single crystal nanoparticles (main exposed surface is {111}), PTO nanofibers (exposed surface is {100} or {010} crystal plane) and PTO nanosheets (exposed surface is {001} crystal plane) by wet chemical method. Pt-PTO nanocomposites were prepared. The results showed that the size of supported PT particles on {111}, {100} and {001} surfaces increased gradually, and the dispersion decreased gradually, from 3-5 nm, 5-20 nm to about 100 nm. When the Pt was not loaded, PTO truncated octahedral single crystal nanoparticles, PTO nanofibers and PTO nanosheets were converted to CO catalytic oxidation at 250 C. The conversion rates are 60%, 5% and 85%, respectively. PTO nanosheets have the highest conversion efficiency to CO and PTO nanofibers have the lowest conversion efficiency to CO. At this time, the center of CO catalytic oxidation reaction is PTO nanostructure itself, and the polarity of the exposed surface of perovskite PTO nanostructure will play a leading role in the balance of CO and O2 adsorption-desorption and the control step of reaction rate. The stronger the polarity of the exposed surface, the more favorable the barrier of the catalytic oxidation reaction will be, and the higher the catalytic performance will be. (7) After loading Pt, the 100% CO conversion of Pt-PTO truncated octahedral nanoparticles, Pt-PTO nanofibers and Pt-PTO nanosheet composite structures will be at 50, 100 and 100 degrees Celsius respectively. The catalytic oxidation center of CO is Pt nanocrystals when the nanocomposite structure of 22.9 (+0.4) kcal mol-1,32.7 (+2.9) kcal mol-1,26.5 (+1.6) kcal mol-1.Pt-PTO is used as catalyst, and its microstructure and surface chemical state determine the kinetics of CO catalytic reaction. Pt nanocrystals grew into large clusters (10 nm) on PTO nanofibers and nanosheets. The proportion of active sites on the surface of Pt nanocrystals was less than that on PTO nanoparticles. (8) Perovskite nanosheets with single crystal domains were successfully prepared by hydrothermal method for the first time. The results of TEM and CS-STEM show that STO selectively grows on the four side non-polarized and {001} positive polarized surfaces of PTO nanosheets, forming a core-shell structure encapsulation layer. STO/PTO has an atomic-level resolution interface. At the interface, neither Pb nor Sr diffuses and the interface is clear. Both the polarized and non-polarized surfaces are epitaxial grown, and the thickness of the films is about 15-20 nm. When the STO films are epitaxial grown in the direction of the positive polarized surface of {001} crystal plane of PTO nanosheets, the thickness of the interface is about 1-2 cell sizes (~1 nm), and when the STO films grow on the non-polarized surface of the side, the interface is about 1-2 cell sizes (~1 nm). The thickness of STO/PTO nanocomposites is only 1 cell size (~0.4 nm). (9) STO/PTO nanocomposites have obvious ferromagnetism at room temperature. The saturation magnetization of the composites increases from 2.5 *10-3 emu/g to 2.5 *10-2 emu/g with the decrease of temperature from 300 K to 5 K, and the corresponding coercive field Hc increases from 138 Oe to 375 Oe. At 300 K, 150 K and 100 K, the magnetic field strength is greater than 500 Oe. After 0 Oe, the typical ferromagnetization curve disappears, replaced by a transition region in which the magnetization intensity M approximates zero; the magnetic field range is about 2 500 Oe, further increasing the magnetic field, the magnetization curve undergoes a sudden change, the corresponding M changes from zero to negative, and then the material becomes diamagnetic; when the magnetic field gradually decreases, it passes through again. As the temperature decreases, the critical magnetic field intensity required for the magnetic transition increases dramatically. The results of structural analysis and first-principles calculations of HAADF-STEM and STEM-EELS show that the ferromagnetism of STO/PTO nanocomposites is reversible at the interface between the ferromagnetism and the positive polarization surface. A large number of Ti3+ ions are closely related, which makes STO/PTO composites a new ferroelectric-ferromagnetic coexistence multi-ferromagnetic system.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TB383.1
【相似文献】
相关期刊论文 前10条
1 祝远民;刘锐锐;詹倩;;畸变钙钛矿结构的晶体定向转换方法与应用[J];人工晶体学报;2014年05期
2 陈志雄,周方桥,付刚,唐大海;钙钛矿结构陶瓷N型半导化评述[J];材料导报;2000年03期
3 常振勇,崔连起;钙钛矿金属氧化物催化剂的研究与应用综述[J];精细石油化工;2002年03期
4 杨志胜;杨立功;吴刚;汪茫;陈红征;;基于有机/无机杂化钙钛矿有序结构的异质结及其光伏性能的研究[J];化学学报;2011年06期
5 庄志强;王蕴辉;施红阳;;铌镁酸铅类钙钛矿结构铁电多晶体的制备技术[J];华南理工大学学报(自然科学版);1992年03期
6 钟伟,吴小玲,姜洪英,汤怒江,都有为;碱金属掺杂ABO_3和A_3B_2O_7型钙钛矿磁卡、磁电阻效应研究[J];稀有金属;2003年05期
7 范厚刚,姜伟棣,宫杰,杨丽丽,杨景海;LaNiO_3的制备及结构的研究[J];吉林师范大学学报(自然科学版);2004年02期
8 赵旭,栗萍,唐贵德,张变芳,禹日程;Nb掺杂对双钙钛矿化合物居里温度的影响[J];河北师范大学学报;2004年04期
9 方亮,张辉,孟范成,洪学濵,刘韩星,袁润章;类钙钛矿新铌酸盐Ba_5LaTi_2Nb_3O_(18)的合成、结构与介电特性[J];高等学校化学学报;2004年07期
10 严清峰,张一玲,李强;铅基驰豫型复合钙钛矿结构PLZST的合成研究[J];无机材料学报;2001年04期
相关会议论文 前10条
1 李菲;翁履谦;徐国跃;张楼英;;溶液络合法制备钙钛矿结构电子陶瓷粉体的合成与表征[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
2 孟健;冯静;刘孝娟;吕敏峰;刘建芬;周德凤;;层状钙钛矿结构化合物的电性和磁性的研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
3 童鹏;孙玉平;;锰基反钙钛矿结构功能材料研究进展[A];2012中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议论文摘要集[C];2012年
4 肖万生;谭大勇;熊小林;刘景;徐济安;;PbCrO_3立方钙钛矿压致等结构相变[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年
5 欧俊;吴伯麟;钟莲云;董顺熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系统相关系的研究[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
6 单跃进;;新型热电换能材料-有序钙钛矿结构氧化物Cd_3TeO_6的研究[A];2004年中国材料研讨会论文摘要集[C];2004年
7 冯黎明;李重河;;ABX_3钙钛矿结构卤化物的形成性[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年
8 程思园;吴刚;邓萌;陈红征;汪茫;;基于N-6-氨己基咔唑的有机-无机杂化层状钙钛矿材料[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
9 隋郁;王阳;王先杰;王一;朱瑞滨;;钙钛矿La_(1-x)Ce_xCoO_3自旋态转变驱动的热电响应[A];2011中国材料研讨会论文摘要集[C];2011年
10 田庚方;李国宝;廖复辉;林建华;刘蕴韬;陈东风;;新型六方钙钛矿Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、结构与性质[A];中国原子能科学研究院年报 2009[C];2010年
相关重要报纸文章 前1条
1 记者 刘霞;美研制出环保型钙钛矿太阳能电池[N];科技日报;2014年
相关博士学位论文 前10条
1 赵立峰;非均质锰基钙钛矿的磁及输运特性研究[D];华中科技大学;2005年
2 童鹏;反钙钛矿结构镍基化合物研究[D];中国科学院研究生院(合肥物质科学研究院);2007年
3 薛瑞婷;有机无机类钙钛矿杂化分子材料的制备和表征[D];中国海洋大学;2011年
4 杨威;高活性纳米LaFe系钙钛矿的控制合成及其催化脱除小分子污染气体的机制研究[D];北京化工大学;2013年
5 张晨阳;钙钛矿多铁材料的合成与性质研究[D];吉林大学;2015年
6 谢颖;A~(2+)B~(4+)O_3型钙钛矿晶体的结构相变和表面稳定性的研究[D];哈尔滨工业大学;2008年
7 亓淑艳;锰(钴)基钙钛矿复合氧化物的制备及磁性研究[D];哈尔滨工程大学;2008年
8 任召辉;钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[D];浙江大学;2008年
9 单丹;无铅钙钛矿结构陶瓷电容器介质材料的制备与介电性能的研究[D];天津大学;2007年
10 王海峰;锡酸盐基透明导电膜及其在全钙钛矿铁电薄膜器件中的应用[D];中国科学技术大学;2009年
相关硕士学位论文 前10条
1 李娜;钙钛矿晶体的结构与化学键[D];大连理工大学;2010年
2 闫旭;Sr-Ba-Fe-Mo-O-S双钙钛矿系列化合物的结构及其性质的研究[D];河北大学;2011年
3 王鲜;类钙钛矿(C_4H_9NH_3)_2MX_4材料的制备与结构[D];武汉理工大学;2004年
4 储艳文;基于钙钛矿纳米材料修饰的复合材料的研究及应用[D];江苏科技大学;2011年
5 朱红;新型六方钙钛矿的合成、结构、相变及性质研究[D];南昌大学;2012年
6 马晓瑜;钙钛矿储氧材料导电行为的研究[D];内蒙古科技大学;2012年
7 郭美荣;新型钙钛矿类纳米纤维的设计、合成及性能研究[D];山西师范大学;2013年
8 杨加栋;新型六方层状钙钛矿化合物的合成、结构及NiFe_2O_4掺杂TiO_2光催化性能[D];天津理工大学;2008年
9 赵明;二价元素A位掺杂对钙钛矿气敏性能的影响[D];山东大学;2010年
10 李纯纯;系列类钙钛矿化合物的合成与微波性能研究[D];武汉理工大学;2009年
,本文编号:2238426
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2238426.html