当前位置:主页 > 科技论文 > 材料论文 >

ZnS基纳米复合材料的制备及光催化性能研究

发布时间:2018-09-12 13:44
【摘要】:半导体光催化剂因环保节能等优点在环境治理,特别是在水体有机污染物降解方面发挥了巨大的作用。在众多半导体光催化剂中,ZnS因具有优异的性能备受人们的关注。但ZnS半导体材料因具有较宽的禁带,只对紫外光有响应,致使ZnS对太阳光的利用率较低。近年来,通过掺杂或复合来提高半导体光催化剂对污染物的降解效率已成为催化领域研究的热点之一。在本文中,我们以硫化物半导体材料为主体进行研究,采用水热法、高温煅烧、离子交换等方法,结合材料本身的容度积等物理化学性质,制备了CdS/ZnS纳米片,Co、Mn共掺杂ZnS纳米球,ZnO/CdS/ZnS纳米球等纳米复合材料,并对制备的产物进行光催化活性研究。主要包括以下3个方面:(1) CdS/ZnS纳米片的制备及光催化活性研究:通过水热法制备ZnS(en)0.5前驱体,以ZnS(en)0.5前驱体和氯化镉为原料,利用离子交换法和水热法成功制备了CdS/ZnS纳米片。利用SEM、XRD、XPS、UV-Vis、TEM等对样品的组成、结构及形貌进行表征。XRD结果表明,随着镉掺杂量的增加,CdS/ZnS纳米片的衍射峰依次向小角度方向移动,说明我们所制备的样品是ZnS和CdS的复合材料,而不是ZnS和CdS的物理混合;从SEM图像可清楚的观察到ZnS(en)0.5前驱体和CdS/ZnS纳米片是由厚度均匀的纳米片组成。之后,以CdS/ZnS纳米片为光催化剂,甲基橙为模拟污染物进行光催化降解实验。实验结果表明,当Cd/Zn的摩尔比等于0.8时(即CZ0.8),片状CdS/ZnS纳米复合材料具有最好的催化活性,将10mg样品CZ0.8加入到50ml甲基橙水溶液(浓度为10mg/L)中,在可见光下照射60min,甲基橙溶液的降解率为99%。(2) Co、Mn共掺杂ZnS纳米球的制备及光催化活性研究:首先利用水热法制备Mn掺杂ZnS纳米球,然后通过离子交换法掺杂第三种金属离子Co,制备Co、Mn共掺杂ZnS纳米球复合材料。利用XRD、UV-Vis及SEM等对所得样品进行表征。SEM图表明样品是由许多直径在400nm左右的球形颗粒组成。之后,分别以ZnS,Co掺杂ZnS, Mn掺杂ZnS和Co、Mn共掺杂ZnS纳米球为光催化剂,甲基橙水溶液为模拟污染物,进行光催化降解实验。实验结果证明,Co、Mn共掺杂ZnS纳米球具有最好的催化活性,当向50ml甲基橙水溶液(浓度为3mg/L)中加入20mmg此催化剂,可见光照射下,90min的降解率为96.7%。(3) ZnO/CdS/ZnS纳米球的制备及光催化活性研究:通过水热法制备ZnS纳米球,以ZnS为基础,分别利用高温煅烧、离子交换等方法制备CdS/ZnS纳米球、ZnO/CdS/ZnS纳米球。利用SEM、XRD、XPS、UV-Vis等对其组成、形貌和性能进行表征。SEM图显示样品ZnO/CdS/ZnS是由许多粒径均一、表面粗糙的纳米球组成。之后以甲基橙为模拟污染物,对四种样品的光催化性能进行研究。结果表明,ZnO/CdS/ZnS纳米球具有最好的催化活性,将20mg ZnO/CdS/ZnS纳米球分散到50ml 10mg/L的甲基橙溶液中,可见光照射下,60min的降解率为96.8%。
[Abstract]:Semiconductor photocatalysts play an important role in environmental control, especially in the degradation of organic pollutants in water because of the advantages of environmental protection and energy saving. Among many semiconductor photocatalysts, ZnS has attracted much attention because of its excellent properties. However, the ZnS semiconductor material has a wide band gap and only responds to ultraviolet light, which results in a low utilization rate of solar light for ZnS. In recent years, improving the degradation efficiency of semiconductor photocatalyst by doping or recombination has become one of the hot spots in the field of catalysis. In this paper, we take sulfide semiconductor materials as the main body of research, adopt hydrothermal method, high temperature calcination, ion exchange and other physical and chemical properties, such as volume product of materials, etc. Co-doped CdS/ZnS nanospheres, ZnS nanospheres and ZnS / ZnS nanospheres were prepared and their photocatalytic activity was studied. The main contents are as follows: (1) the preparation and photocatalytic activity of CdS/ZnS nanoparticles: ZnS (en) 0.5 precursors were prepared by hydrothermal method, and CdS/ZnS nanoparticles were successfully prepared by ion exchange method and hydrothermal method using ZnS (en) 0.5 precursor and cadmium chloride as raw materials. SEM,XRD,XPS,UV-Vis,TEM was used to characterize the composition, structure and morphology of the samples. The results showed that the diffraction peaks of CDs / ZnS nanocrystals shifted to small angles with the increase of CD doping content, indicating that the samples we prepared were composites of ZnS and CdS. Instead of the physical mixing of ZnS and CdS, it can be clearly observed from the SEM images that the ZnS (en) 0.5 precursor and CdS/ZnS nanocrystals are composed of uniform thickness nanocrystals. After that, the photocatalytic degradation of methyl orange was carried out using CdS/ZnS nanoparticles as photocatalyst and methyl orange as simulated pollutant. The experimental results show that when the molar ratio of Cd/Zn is equal to 0.8 (that is, CZ0.8), the flake CdS/ZnS nanocomposites have the best catalytic activity. The 10mg sample CZ0.8 is added to the 50ml methyl orange aqueous solution (the concentration is 10mg/L). Under visible light irradiation for 60 min, the degradation rate of methyl orange solution was 99%. (2) preparation and photocatalytic activity of Co,Mn co-doped ZnS nanospheres: firstly, Mn doped ZnS nanospheres were prepared by hydrothermal method. Then Co,Mn co-doped ZnS nanospheres were prepared by doping a third metal ion Co, by ion exchange method. XRD,UV-Vis and SEM were used to characterize the samples. The results showed that the samples were made up of many spherical particles about the diameter of 400nm. Then the photocatalytic degradation experiments were carried out using ZnS and Co,Mn co-doped ZnS nanospheres doped with ZnS,Co and ZnS, Mn as photocatalysts and methyl orange aqueous solution as simulated pollutants respectively. The experimental results show that the codoped ZnS nanospheres have the best catalytic activity. 20mmg is added to the 50ml methyl orange aqueous solution (concentration of 3mg/L). (3) preparation and photocatalytic activity of ZnO/CdS/ZnS nanospheres: ZnS nanospheres were prepared by hydrothermal method. Based on ZnS, CdS/ZnS nanospheres were prepared by high temperature calcination and ion exchange respectively. SEM,XRD,XPS,UV-Vis was used to characterize its composition, morphology and properties. The results showed that the ZnO/CdS/ZnS was composed of many nanospheres with uniform particle size and rough surface. The photocatalytic properties of four kinds of samples were studied with methyl orange as the simulated pollutant. The results show that ZnO / CDs / ZnS nanospheres have the best catalytic activity. When 20mg ZnO/CdS/ZnS nanospheres are dispersed into 50ml 10mg/L methyl orange solution, the degradation rate of 50ml 10mg/L nanospheres is 96.8g under visible light irradiation for 60min.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33;O643.36

【相似文献】

相关期刊论文 前10条

1 李雪莲;张志东;王红艳;熊祖洪;张中月;;应用平行隔板增强纳米球表面电场[J];物理学报;2011年04期

2 曹星星;张学斌;朱雅君;冀翼;刘莎莎;邵浩;凤仪;;中空纳米球的制备和应用[J];广州化工;2012年11期

3 苏东坡;唐元洪;林良武;杨雷;;氨基酸辅助制备二氧化硅纳米球及其应用[J];材料导报;2012年23期

4 王成永,王姝婧;槲皮素纳米球的制剂学研究[J];中国药学杂志;2005年14期

5 张萍;冯年平;武培怡;;聚合物空心纳米球及其在药学领域的应用[J];药学进展;2006年08期

6 裴立宅;;原料对硅氧化物纳米球形成的影响[J];稀有金属与硬质合金;2008年04期

7 许婧;许时婴;;纳米球/微球包埋维生素A和维生素E[J];食品工业科技;2008年05期

8 郭庆中;周书祥;伍双全;喻湘华;;氟烷基改性的二氧化硅纳米球的制备与应用研究[J];有机硅材料;2009年04期

9 王丹丹;吴韬;;铬掺杂二氧化硅纳米球的铬辅助合成和尺寸控制(英文)[J];吉林师范大学学报(自然科学版);2009年03期

10 郁军;许并社;;单分散镍碳复合纳米球和碳微球的制备[J];功能材料;2009年09期

相关会议论文 前10条

1 齐国斌;杨梅竹;黄娟;薛亚楠;喻发全;;尺寸可控的海藻酸钠/阿霉素复合纳米球的制备与表征[A];2012年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2012年

2 胡成龙;陈韶云;陈旭东;张卫红;陈建;;聚苯胺纳米球/纳米棒生长过程中的拉曼光谱研究[A];第十七届全国光散射学术会议摘要文集[C];2013年

3 庞晋丽;李艳敬;周国伟;;微乳液模板制备径向介孔孔道结构的二氧化硅纳米球[A];中国化学会第29届学术年会摘要集——第27分会:多孔功能材料[C];2014年

4 王帅;张宁;葛小鹏;万瑛博;李晓虹;严礼;夏怡君;宋波;;多组分反应制备规整偶氮苯聚合物:光致形变性能的超分子纳米球[A];中国化学会第29届学术年会摘要集——第08分会:高分子科学[C];2014年

5 程轲;王书杰;程刚;蒋晓红;杜祖亮;;利用纳米球模板技术组装周期性排列的空心金球[A];中国化学会第26届学术年会超分子组装与软物质材料分会场论文集[C];2008年

6 耿,

本文编号:2239180


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2239180.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a8b41***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com