磁流变胶泥的制备及其性能研究
[Abstract]:As a kind of intelligent material controlled by magnetic field, Mr materials mainly include magnetorheological fluid, magnetorheological elastomer, magnetorheological plastic body, magnetorheological lipids and so on. They can be used in building, automobile, medical treatment, military and other fields of vibration isolation and buffer equipment. However, its wide application is limited by its defects. The problems such as poor settling stability of magnetorheological fluid, small shear yield stress, narrow controllable range of magneto-rheological elastomer, easy oil separation of magnetorheological lipids and poor temperature stability are pointed out. In this paper, a new type of magnetorheological material, magnetorheological slime, was prepared by using elastomeric slime with high degree of polymerization linear polysiloxane as carrier liquid. The preparation and basic properties, rheological and viscoelastic properties of the materials were studied. The main works are as follows: 1. The existing magnetorheological materials and their engineering application prospects are analyzed. A new type of magnetorheological material, magnetorheological slime, which is loaded with elastic slime with high degree of polymerization, is proposed. The research significance and main research contents of this subject are described. 2 starting from the microstructure of MRM, a new type of magnetorheological slime with high polymerization degree linear polysiloxane is proposed. Based on the theory of field-induced dipole, the magnetic-induced shear stress model based on single-chain structure is established, and the analytical model of magnetic-induced shear stress is obtained on the assumption that the angle between the chain and the magnetic field direction is exponentially distributed. The results show that the magnetically induced shear stress is directly proportional to the volume fraction of magnetized particles and the square of magnetic field, and is related to the magnetization characteristics and distribution of magnetized particles. When the radius of magnetized particles is 1?m~5?m, the growth rate of magnetostrictive shear stress is fast, and the effect of magnetization on shear stress is small when the magnetic particle radius is larger than 5 nm. The model can be applied to the selection of raw materials and the explanation and description of experimental phenomena during the preparation of magnetorheological cement. 3 the selection principles of carrier liquid, magnetized particles and additives are analyzed. Twelve kinds of magnetorheological mortar samples were prepared by combining the synthetic process of elastic slime and the preparation of magneto-rheological material. The results of infrared spectroscopy, optical microstructure observation, natural observation of sedimentation rate and magnetization characteristics show that the prepared magnetorheological cement has good dispersion, no plate junction, and low remanence and coercivity. The rheological properties of magnetorheological slime were tested by MCR-301 rheometer after 300 days of settling rate was not more than 5.4. The constitutive relation of MRM was fitted by H-B model and its constitutive parameters were identified. The results show that H-B model can describe the constitutive relation of magnetorheological slime. The effects of magnetizable particle content, applied magnetic field, carrier liquid and temperature on the shear stress of magnetorheological slime were measured and analyzed. The results show that the increase of magnetized particle content, magnetic field and viscosity of the liquid carrier can increase the shear stress. The shear stress decreases with the increase of temperature. In addition, when the shear rate is 200s-1 and the magnetic field is 0 ~ 1T, the shear stress adjustment range of 20wcp60% magnetorheological mortar is 14.1k Pa~128 k Pa.5. The viscoelastic properties of MRM are studied under the oscillatory shear mode of MCR-301 rheometer. The relationship between energy storage modulus, loss factor and strain, magnetic field and frequency is analyzed. The results show that the relative magnetorheological effect of 20wccp20% samples can reach 1 400 and the linear viscoelastic region can be widened by increasing the magnetic field, and the linear viscoelastic region at 1T is 20 times as high as that at 0T. In the linear viscoelastic region, the magnetorheological mortar is mainly elastic and the storage modulus is independent of frequency, while in the nonlinear viscoelastic region, the magnetorheological mortar is mainly viscous and the energy storage modulus increases linearly with the frequency.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB381
【相似文献】
相关期刊论文 前10条
1 余心宏,马伟增,王立忠;磁流变体制备与应用研究[J];电子工艺技术;2001年04期
2 路家斌;阎秋生;田虹;高伟强;;磁流变效应微磨头抛光特性研究[J];金刚石与磨料磨具工程;2009年04期
3 陶晓峰;杨建国;李蓓智;李中会;;光学玻璃磁流变抛光液的研究与材料去除实验[J];机械设计与制造;2011年02期
4 廖昌荣,李立新,陈伟民,黄尚廉;磁流变材料及其在振动控制中的应用[J];材料导报;2000年06期
5 黄豪彩,黄宜坚;磁流变技术及其在机械工程中的应用[J];制造技术与机床;2003年04期
6 付仟骞;王金刚;印敬亮;;磁流变体的特性及测试[J];内蒙古石油化工;2006年03期
7 秦利军;龚兴龙;江万权;李剑锋;彭超;;铁粉含量对明胶基磁流变胶流变性能的影响[J];机械工程材料;2010年05期
8 余娟;;磁流变即效微砂轮加工玻璃表面的形貌特征研究[J];金刚石与磨料磨具工程;2013年04期
9 张鹏程;阎秋生;路家斌;;磨料对磁流变工作液性能及加工效果的影响[J];金刚石与磨料磨具工程;2010年01期
10 余淼;夏永强;;基于链化分析的磁流变弹性体剪切模量模型[J];功能材料;2009年11期
相关会议论文 前10条
1 黄尚廉;;磁流变技术及其潜在工程应用概述[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
2 廖昌荣;张玉麟;李立新;陈伟民;黄尚廉;;磁流变材料的模型描述及影响因素分析[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
3 宣守虎;张燕丽;周玉凤;江万权;龚兴龙;;相变型磁流变材料的制备与力学性能研究[A];第六届全国电磁流变液及其应用学术会议程序册及论文摘要集[C];2011年
4 王庆辉;吴张永;温成卓;吴喜;;磁流变液压技术的发展现状与展望[A];2011装备制造业绿色创造 节能减排发展论坛论文集[C];2011年
5 叶兴柱;龚兴龙;江万权;严长青;;磁流变胶的沉降和力学性能研究[A];第六届中国功能材料及其应用学术会议论文集(3)[C];2007年
6 汤爱军;阎秋生;路家斌;高伟强;李伟华;田虹;;磁极形状对磁流变抛光加工效果影响的研究[A];2007年中国机械工程学会年会论文集[C];2007年
7 汤爱军;阎秋生;路家斌;高伟强;李伟华;田虹;;磁极形状对磁流变抛光加工效果影响的研究[A];2007年中国机械工程学会年会之第12届全国特种加工学术会议论文集[C];2007年
8 许阳光;龚兴龙;宣守虎;;新型高性能磁流变材料的制备、表征及机理研究[A];第六届全国电磁流变液及其应用学术会议程序册及论文摘要集[C];2011年
9 卢秀首;乔秀颖;龚兴龙;杨涛;李伟;孙康;李盟;杨康;谢宏恩;殷奇;王东;陈晓东;;各向同性和各向异性热塑性磁流变弹性体的制备与表征[A];中国流变学研究进展(2010)[C];2010年
10 宣守虎;张燕丽;江万权;龚兴龙;;磁性橡皮泥的力学性能研究[A];第十三届全国实验力学学术会议论文摘要集[C];2012年
相关博士学位论文 前10条
1 郑军;磁流变传动理论与试验研究[D];重庆大学;2008年
2 司鹄;磁流变体的力学机理研究[D];重庆大学;2003年
3 柴京富;集群磁流变效应研磨刷研抛工具加工机理研究[D];广东工业大学;2011年
4 彭小强;确定性磁流变抛光的关键技术研究[D];国防科学技术大学;2004年
5 白杨;磁流变抛光液的研制及去除函数稳定性研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
6 路家斌;电磁流变协同效应微磨头加工机理研究[D];广东工业大学;2011年
7 陈琳;磁流变弹性体的研制及其力学行为的表征[D];中国科学技术大学;2009年
8 张玮;复合型磁流变弹性体的研制及其性能研究[D];中国科学技术大学;2011年
9 王慧军;超声波磁流变复合抛光关键技术研究[D];哈尔滨工业大学;2007年
10 王银玲;橡胶基金属铁粒子复合材料的制备及其作为磁流变弹性体在安全工程中应用的研究[D];中国科学技术大学;2006年
相关硕士学位论文 前10条
1 李林斌;磁流变抛光循环系统优化设计技术研究[D];中国工程物理研究院;2012年
2 吴雨骏;磁流变弹性体触觉传感作动器设计与特性分析[D];南京理工大学;2015年
3 王磊;磁流变弹性体双转子自供电减振器结构设计与动力学特性分析[D];青岛理工大学;2015年
4 杜伟军;惯组磁流变减振器设计及性能分析[D];南京理工大学;2015年
5 韩利国;金属材料磁流变光整加工技术研究[D];西安工业大学;2015年
6 刘术志;聚氨酯基磁流变材料磁控电磁学特性研究[D];重庆大学;2015年
7 冯娜;蓝宝石磁流变抛光液的研究[D];西安工业大学;2014年
8 吴春江;汽车磁流变脂碰撞缓冲器的结构优化研究[D];重庆交通大学;2015年
9 王芳芳;磁流变胶泥的制备及其性能研究[D];重庆大学;2015年
10 田杰;磁流变缓冲器驱动电流源研究[D];重庆大学;2015年
,本文编号:2297045
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2297045.html