拓扑绝缘体材料的制备与表征
[Abstract]:A topological insulator is a class of special insulators whose body is insulated and whose surface is a special insulator with time inversion symmetry protection metal state due to the strong spin orbit coupling. Non-interference "avoids the electronic energy consumption caused by the disorder collision of electrons, which is of great significance to solve the problem of semiconductor industry and even the development of information technology." The Bi2Se3, in the second generation 3D topological insulator is the most close to the ideal state because it is a pure chemical phase and the surface state has only one Dirac point. The energy gap is 0.3eV (equivalent to 3600K), which is the largest topological insulator with energy gap at present. In recent years, it has become the focus of attention and research. In this paper, the development, classification and application of topological insulators are summarized, and Bi2Se3, the most representative of topological insulators, is chosen as the research object. The topological surface properties of Bi2Se3 crystals are easily masked by body state, which makes it difficult to observe the phenomenon of topological insulation. Due to the large specific surface area of nano-materials, Bi2Se3 nanostructures are conducive to the study of their unique surface states, and are also very important for practical applications of devices. In this paper, Bi2Se3 nanostructures were prepared by an economical and efficient chemical vapor deposition (CVD) method. The main contents of this study were as follows: (1) the effect of Se on the synthesis of Bi2Se3 nanostructures was investigated by adding Se powder into the Bi2Se3 powder of evaporation source. The addition of Se powder into the evaporator can improve the crystallization quality of Bi2Se3, facilitate the transverse growth of Bi2Se3 nanostructures, and ensure that the atomic ratio of Se to Bi is closer to the standard value of 1.5. At the same time, the Raman characteristic peaks A121g and Eg of Bi2Se3 are blue shifted. (2) to investigate the effect of Bi2Se3, preparation temperature on Bi2Se3 nanostructures at different growth temperatures. With the increase of temperature, the crystallization quality and surface size of the prepared Bi2Se3 become better and better, and the growth mechanism changes from VLS to VS, while the atomic ratio of Se to Bi decreases. At 650 掳C, bismuth oxide appears in the product, which results in the red shift of the Raman vibration peak A11g. Finally, the optimum growth temperature was found to be 500 掳C. (3) Bi2Se3, was synthesized at the same temperature (500 掳C),) for different growth time to investigate the effect of growth time on Bi2Se3 nanostructures. With the increase of growth time, the crystalline quality of the synthesized Bi2Se3 nanostructures increases gradually, and the crystallization quality tends to be stable after about 10min. The surface size of Bi2Se3 nanostructures increases continuously, and the intensity of Raman peaks increases first and then decreases. The atomic ratio of Se to Bi decreases. Finally, the optimum growth time was found to be 10-20 min. (4) graphene was grown on copper foil by chemical vapor deposition and transferred to SiO2 substrate by wet method. Bi2Se3, was synthesized by using graphene as buffer layer to investigate the effect of graphene on the preparation of Bi2Se3 nanoparticles. The addition of graphene helps to improve the crystallization quality of Bi2Se3 nanocrystals, and makes the growth of Bi2Se3 nanoparticles along the C-axis more obvious. In addition, the in-plane vibration peak E2g of Bi2Se3 is red-shifted due to the addition of graphene.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM21;TB383.1
【共引文献】
相关期刊论文 前10条
1 莫尊理;朱小波;赵国平;王博;郭瑞斌;;石墨烯的光电性能及其应用[J];硅酸盐通报;2013年09期
2 郭帅;吴孝松;;介观样品低温热电效应的测量方法[J];低温物理学报;2013年05期
3 董世运;徐滨士;王玉江;魏世丞;;石墨烯制备和应用中的表面科学与技术[J];中国表面工程;2013年06期
4 范海波;王旋;周晨露;陈武军;郑新亮;姚合宝;刘生忠;;ZnO纳米棒/石墨烯异质结构的应用研究进展[J];材料导报;2013年15期
5 李宏;李云;;石墨烯透明导电薄膜的研究现状及应用前景[J];材料导报;2013年15期
6 王亚平;李英芝;张清华;;石墨烯/聚酰亚胺复合材料的制备与性能[J];高分子材料科学与工程;2013年12期
7 石文荣;邹鹏;杨书华;黄德欢;;一种石墨烯制备方法[J];兵器材料科学与工程;2013年06期
8 杨云雪;关毅;张利华;;热剥离法制备功能型石墨烯的研究进展[J];功能材料;2013年24期
9 何青;马爱斌;江静华;宋丹;陈建清;杨东辉;邹中秋;李玉华;;石墨烯的制备及其在金属防腐中的应用进展[J];功能材料;2013年S2期
10 张凤;方新心;成霁;唐逢杰;金庆辉;赵建龙;;硅基石墨烯场效应管关键工艺研究[J];功能材料;2013年S2期
相关会议论文 前2条
1 王雅雯;蒲斌;郭瑞斌;莫尊理;;石墨烯/纳米钴复合材料的制备及电磁性能研究[A];甘肃省化学会第二十八届年会暨第十届中学化学教学经验交流会论文集[C];2013年
2 杝隆建;李冠霖;T3家任;;石墨烯场激发光元件的开发[A];海峡两岸第二十一届照明科技与营销研讨会专题报告暨论文集[C];2014年
相关博士学位论文 前10条
1 李成均;含钛类锂电池负极材料的合成及其电化学性能的研究[D];华东理工大学;2013年
2 杜宪;石墨烯的可控制备、后处理及其电化学电容性能研究[D];北京化工大学;2013年
3 冯红彬;石墨烯及其复合材料的制备、性质及应用研究[D];中国科学技术大学;2013年
4 胡晓阳;碳纳米管和石墨烯的制备及应用研究[D];郑州大学;2013年
5 黄静;自悬浮聚苯胺的制备、结构及其复合材料的特性研究[D];武汉理工大学;2013年
6 李彩霞;石墨烯及其组装材料的制备与表征[D];华东师范大学;2013年
7 廖瑞娟;茶多酚修饰石墨烯及其橡胶复合材料[D];华南理工大学;2013年
8 张叶臻;新型石墨纸和石墨烯在微生物燃料电池中的应用研究[D];华南理工大学;2013年
9 胡爱平;纳米Fe_3O_4/石墨烯电极材料制备及电化学性能研究[D];湖南大学;2013年
10 孙_g;水相外延法生长典型Ⅴ族元素含氧酸盐及光谱特性分析[D];哈尔滨工业大学;2012年
相关硕士学位论文 前10条
1 黄奎;大面积高质量石墨烯的制备与表征[D];苏州大学;2013年
2 何朝东;石墨烯(氧化石墨)/银复合材料的制备和性能研究[D];北京化工大学;2013年
3 汪胜平;改性石墨烯/氮掺杂二氧化钛杂化材料的制备及其光催化活性的研究[D];郑州大学;2013年
4 郭焕焕;银/石墨烯纳米复合材料的制备及其对MCF-7细胞毒性探索[D];郑州大学;2013年
5 李利花;超临界二氧化碳辅助石墨烯的制备、功能化及在燃料电池中的应用[D];郑州大学;2013年
6 訾丽娟;基于碳纳米管和石墨烯修饰电极的构筑及分析应用[D];郑州大学;2013年
7 胡晓炜;基于氧化石墨烯/聚苯胺的生物传感器[D];安徽大学;2013年
8 相金;氧化钛基复合薄膜的制备及光电转换性质[D];安徽大学;2013年
9 闫曼曼;石墨烯纳米片的非基板化学合成及机理研究[D];北京化工大学;2013年
10 谢德钰;石墨烯及其复合材料的制备与储能应用[D];西南交通大学;2013年
本文编号:2297344
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2297344.html