当前位置:主页 > 科技论文 > 材料论文 >

PET基材纳米吸墨材料的制备及性能研究

发布时间:2018-10-31 20:21
【摘要】:纳米吸墨材料以其鲜明的色彩表达能力、优良的色彩打印效果等优点近年来得到迅猛发展。吸墨材料最终质量的好坏很大程度上由吸墨材料中吸墨层的性能决定。然而,目前产业化的吸墨材料存在吸收性差,印刷性不好等缺点,限制了其应用。本文的目的是构建性能优异可控的纳米吸墨材料。在本文中首先对基材改性进行了研究,接着对不同种类的纳米粒子对吸墨材料性能的影响进行了探讨,并以不同粒径和比表面积的纳米二氧化硅为研究对象,研究了同种纳米组分对吸墨材料性能的影响及性能增强机理,最后考察了胶粘剂用量对纳米吸墨材料的性能影响。PET薄膜是弱极性的高分子材料,其亲水性能比较差,因而须对其在涂装前进行预处理。利用低温等离子体处理技术对吸墨材料所用PET薄膜进行表面改性,通过变化不同的处理时间与处理功率来改善PET表面的润湿性,从而为得到高品质的纳米吸墨材料奠定坚实的基础。通过对低温等离子体处理后基材PET表面粗糙度、表面元素、表面形貌、表面接触角和表面能等的表征发现,低温等离子体改性通过改变PET薄膜表面的含氧量,极性官能团增加,表面粗糙度变大,增加了PET界面处的空间机械锁合作用,提高了PET与胶粘剂间的界面粘结性能。改性之前C=O官能团的含量为零,在改性时间为20s时其含量增加到13.37%。另通过测试发现低温等离子对PET改性具有时效性,且其力学性能在改性前后发生微小的变化。从表3-5中可以看出,PET薄膜在改性之前,在对C1s谱图进行分峰时,在谱图中C-C(284.80e V)、C-O(C-OH)(285.78e V)、O=C-O(COOH)(286.90e V)这些官能团几乎不存在。对经过等离子体改性的PET进行分峰,C-C、C-O(C-OH))、O=C-O(COOH)这几个官能团的含量均有增加,尤其是C=O官能团和O=C-O官能团,未改性之前它们的含量为零。改性后C=O官能团在改性时间为10s时其含量增加到12.83%,在其改性时间为20s时其含量增加到13.37%。而改性后O=C-O官能团在改性时间为10s时其含量增加到14.01%,在其改性时间为20s时其含量增加到17.46%。改性后PET表面C=O官能团的增加,也表明PET的极性得到了改善。极性的改善将直接影响到PET与吸墨层之间的粘结性能及界面间的结合能力。对不同种类的颜料构成的纳米吸墨材料的吸墨层结构进行表征,纳米吸墨材料加入了这几种纳米粒子后,其本体性能、表面强度,印刷性和稳定性均有所提高。纳米二氧化硅均匀分散在胶粘剂中,其分散性好于纳米二氧化钛和纳米碳酸钙。纳米二氧化硅构成的吸墨材料对墨水的吸收曲线波动幅度较小,墨水渗透最深处的深度值为16.6μm,渗透最浅处的深度值为13.6μm。纳米二氧化硅构成的吸墨材料印刷性最好,含纳米二氧化钛的吸墨材料的稳定性提高的最多。对于纳米吸墨材料而言,由较小粒径的二氧化硅构成的吸墨材料的吸墨层表面颗粒堆积较为密实(但是表面有裂纹),而较大粒径的纳米二氧化硅粒子构成的吸墨层则粒子排列松散。随着纳米二氧化硅粒径的增加,吸墨层表面的孔隙也不断增大。吸墨材料的孔隙率、吸墨层孔径、孔面积和孔体积都随纳米粒子粒径的增加而增加。通过测试分析表明,粒径在12nm的二氧化硅粒子制得的吸墨材料的白度、平滑度、光泽度、吸收效率较另外两种纳米二氧化硅粒子制得的吸墨材料的的相应值大,而粗糙度、浸润性、浸润深度、表面强度、密度差值则颜料粒径越小这些值越小。吸墨材料由于加入了纳米粒子,其耐热稳定性和耐紫外稳定性均有所提高,纳米粒子的加入起到了对吸墨材料的保护作用,提高了其使用年限。当胶粘剂用量从10%增加到25%时,吸墨材料的孔隙体积减小,平均孔径下降,透气性减弱,吸墨层表面的宏观粗糙度变小,吸墨材料的表面自由能降低,油墨吸收性随之减小。增加胶粘剂的用量,吸墨层表面成膜性增强,吸墨材料热稳定性降低。因而,考虑成本、胶粘剂对纳米复合吸墨材料性能影响等因素,在本论文中,制备纳米吸墨材料的胶粘剂用量一般不超过20%。
[Abstract]:The nano ink absorbing material has the advantages of vivid color expression ability, excellent color printing effect and the like, and has been developed rapidly in recent years. The final quality of the ink-receptive material is largely determined by the performance of the ink-receptive layer in the ink-receptive material. However, at present, the ink-absorbing material of the industrialization has the defects of poor absorption, poor printability and the like, and the application thereof is limited. The purpose of this paper is to build a nanometer ink-absorbing material with excellent properties. The effects of different kinds of nano-particles on the properties of ink-absorbing materials were studied in this paper, and nano-silica with different particle size and specific surface area was studied. The effect of the same nano-component on the properties of ink-absorbing material and the mechanism of performance enhancement were studied, and the effect of the amount of adhesive on the properties of the nano-ink-absorbing material was investigated. The PET film is a weakly polar polymer material, and the hydrophilicity of the PET film is poor, so it is necessary to pre-treat the PET film before coating. the surface modification of the PET film used for the ink-absorbing material is carried out by utilizing the low-temperature plasma processing technology, and the wettability of the PET surface is improved by changing different treatment time and processing power so as to lay a solid foundation for obtaining the high-quality nano ink-absorbing material. Through characterization of the surface roughness, surface elements, surface morphology, surface contact angle and surface energy of the substrate after the low temperature plasma treatment, the low temperature plasma modification can change the oxygen content of the surface of the PET film, the polar functional group is increased, and the surface roughness becomes large, and the interfacial bonding property between the PET and the adhesive is improved. The content of C = O functional group before modification was zero, and its content increased to 13.37% when the modification time was 20s. It was found that the modification of PET by low-temperature plasma was time-sensitive and its mechanical properties changed slightly before and after modification. As can be seen from Table 3-5, the functional groups of C-C (284. 80e V), C-O (C-OH) (285. 78e V), O = C-O (COOH) (286. 90e V) are hardly present in the spectrogram prior to modification of the PET film. The content of the functional groups of C-C, C-O (C-OH), O = C-O (COOH) was increased, especially C = O functional group and O = C-O functional group, and their content was zero before modification. After modification, the content of C = O functional group increased to 12.83% when the modification time was 10s, and its content increased to 13.37% when its modification time was 20s. The modified O = C-O functional group increased to 14.01% when the modification time was 10s, and its content increased to 17. 46% when its modified time was 20s. The addition of the modified PET surface C = O functional group also shows that the polarity of PET is improved. The improvement of polarity will directly affect the bonding energy between PET and ink absorbing layer and the bonding ability between interfaces. the ink receptive layer structure of the nano ink-absorbing material composed of different kinds of pigments is characterized, and after the nano ink-absorbing material is added with the nano-particles, the bulk property, the surface strength, the printing property and the stability of the nano ink-absorbing material are improved. the nano silicon dioxide is uniformly dispersed in the adhesive, and the dispersibility is good for the nano titanium dioxide and the nano calcium carbonate. The ink absorbing material composed of nano silicon dioxide has small fluctuation range of the absorption curve of the ink, the depth value at the deepest depth of the ink is 16. 6. m u.m, the depth value at the deepest part of the penetration is 13. 6. m u.m. The printing property of the ink-absorbing material composed of nano silicon dioxide is the best, the stability of the ink-receptive material containing the nano-titanium dioxide is improved. In the case of the nano-ink-absorbing material, the surface particles of the ink-absorbing layer of the ink-absorbing material composed of silica having a smaller particle diameter are densely packed (but there are cracks on the surface), and the ink-absorbing layer composed of the nano-silica particles having a larger particle size is loosely arranged. With the increase of the size of the nano-silica, the porosity of the surface of the ink-absorbing layer also increases. The porosity of the ink-absorbing material, the pore size of the ink-absorbing layer, the pore area and the pore volume increase with the increase of the particle size of the nanoparticles. According to the test analysis, the whiteness, smoothness, glossiness and absorption efficiency of the ink-absorbing material prepared by the silica particles with the particle size of 12nm are large, and the corresponding values of the ink-absorbing material prepared by the two kinds of nano-silica particles are large, and the roughness, the wettability, the wetting depth and the surface strength are large, The smaller the density difference, the smaller these values the smaller the pigment particle size. As the ink absorbing material is added with nano particles, the heat-resistant stability and the ultraviolet-resistant stability of the ink-absorbing material are improved, the addition of the nano-particles plays a protective role on the ink-absorbing material, and the service life of the ink-absorbing material is improved. When the amount of the adhesive is increased from 10% to 25%, the pore volume of the ink-absorbing material is reduced, the average pore diameter is reduced, the air permeability is weakened, the macro-roughness of the surface of the ink-absorbing layer becomes small, the surface free energy of the ink-absorbing material can be reduced, and the ink absorption is reduced. the amount of the adhesive is increased, the film forming property of the ink-absorbing layer is enhanced, and the thermal stability of the ink-absorbing material is reduced. Therefore, in this paper, the amount of adhesive used to prepare the nano-ink-absorbing material is generally not more than 20% considering the factors such as cost and the influence of the adhesive on the performance of the nano composite ink-absorbing material.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB383.1

【相似文献】

相关期刊论文 前10条

1 ;中国将放开废旧PET整瓶进口[J];国外塑料;2009年11期

2 韩美琳;;荷兰国家矿业公司PET回收装置能力增加一倍[J];聚酯工业;1990年03期

3 黄兴山;;第13届全球PET链产品等年会简要介绍[J];合成技术及应用;2009年02期

4 ;中国发布废PET整瓶进口规定[J];国外塑料;2010年11期

5 张明;;连续法PET生产的技术进展[J];金山油化纤;1987年03期

6 周丽娟;杜邦的新型PET短纤维[J];合成纤维;1988年01期

7 高乃奎;吴南屏;谢大荣;;热电作用下PET结晶结构的转变及其性能研究[J];塑料;1990年01期

8 何祚云,熊远凡,任东方,刘欣;用PET废料制备对苯二甲酸二辛酯新工艺[J];精细石油化工;1997年03期

9 ;中国将放开废旧PET整瓶进口[J];中国包装工业;2009年12期

10 ;PET回收的增长率下降到25%[J];化工文摘;2000年07期

相关会议论文 前10条

1 黄力平;;PET在人类随意运动控制研究中的应用[A];第三届全国康复医学青年学术会议论文集[C];1999年

2 赵庆章;杨宇;张国耀;;PET/蒙脱土复合材料的研究与开发[A];第二届功能性纺织品及纳米技术应用研讨会论文集[C];2002年

3 史源;金榕兵;赵锦宁;唐仕芳;李华强;;PET在新生儿缺氧缺血性脑病的初步临床应用[A];全国围产医学专题学术研讨会论文汇编[C];2007年

4 陈为栋;刘济;顾幸生;;PET固相聚合建模与控制研究[A];上海市化学化工学会2006年度学术年会论文摘要集[C];2006年

5 杨国仁;;PET与放疗计划[A];全国PET/CT新技术研讨会(学习班)暨PET读片会资料汇编[C];2005年

6 许向彬;李忠明;杨鸣波;谢邦互;杨伟;;导电原位微纤化CB/PET/PE复合材料:电阻-温度效应[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年

7 郭增山;王栋;刘克忠;朱长进;;用于PET阻燃的聚季戊四醇磷酸酯的合成、表征[A];第七届全国磷化学化工暨第四届海峡化学生物学、生物技术与医药发展讨论会论文集[C];2006年

8 杜斌;杨睿;谢续明;;PET的湿热老化机理研究[A];2010年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2010年

9 殷国蓉;郭卫红;高原冀;吴驰飞;;回收PET塑料的低温固相反应挤出[A];2004年材料科学与工程新进展[C];2004年

10 赵春雷;陈巧军;葛玲娟;王舰;;~(18)F-FDG和11C-蛋氨酸PET对脑肿瘤鉴别诊断效能的荟萃分析[A];首届浙江省青年核医学与分子影像论坛暨浙江省第十三届核医学与放射医学防护学术会议论文汇编[C];2013年

相关重要报纸文章 前10条

1 陈家荣;我国发布废PET整瓶进口规定[N];中国食品质量报;2010年

2 本报记者 施建平;中国发布废PET整瓶进口规定[N];中国食品报;2010年

3 本报记者 李彩霞;阿特拉斯·科普柯最新节能PET吹瓶压缩机亮相北京[N];中国包装报;2008年

4 梅子;机器人PET/磁共振填补了国际空白[N];中国改革报;2009年

5 记者 何勇;国产PET在沈阳研制成功[N];人民日报海外版;2009年

6 李颖;机器人PET/磁共振填补国际空白[N];科技日报;2009年

7 施建平;中国政府有望撤销禁止直接进口废旧PET整瓶的规定[N];中国食品报;2010年

8 见习记者 任悦鸣 通讯员 罗玲玲;我国首个PET循环产业化项目落户天津[N];中国航天报;2013年

9 本报记者 马艳红;全球首台数字PET在我国诞生[N];中国医药报;2012年

10 兴鹤;原料价格:PET飞涨原动力[N];中国石化报;2005年

相关博士学位论文 前10条

1 吴捷;PET基材纳米吸墨材料的制备及性能研究[D];哈尔滨工业大学;2017年

2 黎作鹏;体域纳米网络关键技术研究[D];哈尔滨工程大学;2014年

3 张正飞;一维氧化钨纳米材料无催化剂生长的原位透射电镜研究[D];浙江大学;2017年

4 刘敬东;铜纳米颗粒合成及其低温烧结互连行为研究[D];哈尔滨工业大学;2017年

5 谷志远;基于纳米线的光学微腔和纳米激光器[D];哈尔滨工业大学;2016年

6 潘金彬;生物活性蛋白导向简易构建新型高效安全的纳米探针用于肿瘤的诊疗[D];天津医科大学;2017年

7 戴清源;基于乳清分离蛋白修饰的低环境敏感型纳米颗粒构建与稳定机制[D];江南大学;2017年

8 刘洋;多功能纳米胶束体系联合声动力与化疗靶向治疗肝癌的研究[D];天津医科大学;2017年

9 任勃;镍钴基氧化物纳米纤维的静电纺丝法制备及电化学性能研究[D];哈尔滨工程大学;2014年

10 赵婕;基于单根金属氧化物一维微/纳米线的双电极结构器件的性能研究[D];南昌大学;2017年

相关硕士学位论文 前10条

1 朱笑天;金纳米棒的制备与修饰及其在环境污染物检测中的应用[D];郑州大学;2017年

2 任雪利;纳米气泡对污染物的吸附及其影响因素探究[D];上海师范大学;2017年

3 刘晓慧;硅表面纳米结构设计与计算[D];青岛大学;2017年

4 崔行恒;磁性元素掺杂氧化铟锡纳米结构的制备与物性研究[D];上海师范大学;2017年

5 任健;面向太阳能燃料制备的纳米异质结材料的研究[D];天津大学;2016年

6 闫贵花;静电纺制备聚丙烯腈/纳米纤维素基多孔碳材料及电学性能研究[D];郑州大学;2017年

7 张路f,

本文编号:2303421


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2303421.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f8e28***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com