复合材料储能飞轮结构应力及动态特性研究
[Abstract]:With the rapid development of economy and society, the energy crisis becomes more and more serious. As a new energy storage technology, flywheel energy storage has the advantages of high energy storage, high energy density, high efficiency, reliability and no pollution. With the appearance of high strength composite materials, the continuous development of motor and control system and the improvement of magnetic bearing technology, the flywheel energy storage system has been further improved in stress level, energy storage density and dynamic performance. It brings broad research space and application prospect for flywheel energy storage technology. By reading a large number of literatures, the research status of flywheel energy storage system at home and abroad is understood, and the overall structure design, the analysis of flywheel stress level and the study of system dynamic performance are completed, which is of great significance to the optimization of flywheel energy storage system. Firstly, according to the given technical index, the reasonable mechanical and electrical structure is determined for the flywheel system, and a series of important parts are selected to ensure the compact structure, good control, reliable operation of the whole system. Taking the circumferential winding composite flywheel as the research object, the geometric model of the whole flywheel rotor is established, and the motion balance equation of the flywheel is established by combining the composite mechanics knowledge. Finally, the theoretical expressions of radial stress and circumferential stress of flywheel rotor are obtained, which lays a theoretical foundation for the stress analysis of flywheel. The stress of single-layer and multi-layer flywheel rotor is analyzed in detail by ANSYS Workbench finite element software. For single-layer flywheel rotor, the effects of elastic modulus ratio, internal and external radius ratio and Poisson ratio on radial stress and circumferential stress of flywheel are analyzed, and for multi-layer flywheel rotor, the variation of rotor stress under multi-layer isomorphism and multi-layer isomerism is analyzed. The influence of radial thickness and interlaminar interference on stress is also considered. Finally, through the understanding of rotor dynamics and modal analysis theory, the natural frequency and mode shape of flywheel rotor system are obtained by using ANSYS Workbench software. At the same time, the factors influencing the critical speed of the system are analyzed in detail, including the structure size of the flywheel shaft, the gyro effect, the stiffness and damping of the electromagnetic bearing. In order to optimize the parameters and improve the vibration characteristics of the system.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB33;TM91
【相似文献】
相关期刊论文 前10条
1 陈立群,张艳鸣,谢友柏;电磁轴承的发展与应用[J];西北轻工业学院学报;1996年03期
2 吴维贤;电磁轴承[J];硫磷设计与粉体工程;2000年01期
3 董宏林;王子华;魏绍义;;整体四磁极径向电磁轴承电磁耦合分析[J];大庆石油学院学报;2006年03期
4 李如松;电磁轴承高速主轴部件[J];组合机床与自动化加工技术;1993年01期
5 陈立群,张艳鸣,张钢,谢友柏;电磁轴承的力学特性[J];西北轻工业学院学报;1997年01期
6 刘淑琴,詹东安,彭旭东,虞烈;重载电磁轴承设计研究[J];山东矿业学院学报;1998年03期
7 陈立群,张钢,谢友柏;电磁轴承控制器参数仿真与实验[J];西北轻工业学院学报;1998年01期
8 杨平;偏置线圈式电磁轴承的研究[J];连云港化工高等专科学校学报;1999年04期
9 谷继军;周樊华;;电磁轴承在印刷设备中的应用[J];出版与印刷;2011年04期
10 张庆春;邢涛;李国栋;姜军;梁迎春;;电磁轴承磨床电主轴控制器的研究[J];机械工程学报;2006年11期
相关会议论文 前10条
1 库少平;胡业发;周祖德;;电磁轴承多传感器数据融合处理[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
2 刘兆仲;李静;;一类主动电磁轴承系统模型的非线性动力学分析[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
3 尹小娜;李静;;主动电磁轴承-转子系统周期解存在的条件及其数值模拟[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年
4 蒋科坚;祝长生;;一种电磁轴承转子系统振动主动抑制方法[A];第9届全国转子动力学学术讨论会ROTDYN'2010论文集[C];2010年
5 刘文洲;楚军;赵雷;;电磁轴承磁场分析和优化设计[A];第二届全国信息获取与处理学术会议论文集[C];2004年
6 谷会东;赵雷;赵鸿宾;;电磁轴承在转子过临界中的应用[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
7 贺航宇;谷会东;石磊;赵雷;张良驹;;基于虚拟仪器的电磁轴承系统辨识研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
8 沙宏磊;徐e,
本文编号:2311155
本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2311155.html