当前位置:主页 > 科技论文 > 材料论文 >

纳米金属氧化物光电材料的制备、微观结构及其物理化学性能研究

发布时间:2018-11-20 10:09
【摘要】:随着纳米科技的发展,纳米光电材料展现出比块材更加优异的物理化学性能。因此,纳米光电材料的研发工作引起了人们的广泛兴趣。近几年来研究发现,金属氧化物纳米光电材料由于其独特的物理化学性能和简便的制备工艺,使其在环境保护、纳米光电子器件以及太阳能电池中呈现出巨大的应用前景。本论文详细研究了氧化亚铜纳米颗粒、有机染料/二氧化钛及氧化铜/氧化亚铜纳米杂化材料等金属氧化物纳米半导体材料的微观结构及其光电性能,阐明了其生长机理,关联了材料微观结构与宏观物化性能。主要研究内容如下:(1)在不同温度下,通过调控电化学沉积过程的电流密度与反应时间,保持总电量不变,制备出不同形貌的Cu2O纳米晶。利用扫描电子显微镜和紫外分光光度计探讨了不同实验条件对沉积产物的形貌、尺寸及成分的影响,进一步深入地研究了Cu2O纳米晶电化学沉积的生长机制。(2)利用无电极沉积法制备出形貌规则的Cu2O纳米八面体颗粒,并通过扫描电子显微镜和透射电子显微镜对不同金属基底上得到产物的微观结构进行了细致的研究,并提出了其生长机理模型。此外,探究了Cu2O纳米八面体的光学性能及其光催化活性。(3)利用自组装技术制备出有机染料与TiO2纳米颗粒杂化的有机/无机杂化纳米材料。利用扫描电子显微镜和透射电子显微镜对其微观结构进行了细致的观察研究,发现有机分子优先吸附于TiO2纳米颗粒的{101}面,并与其光学性能进行关联。利用密度泛函理论深入地探究了有机染料分子在TiO2纳米颗粒{101}表面的择优吸附。(4)Cu2O/CuO纳米杂化材料微观结构的前期研究工作发现,生长在CuO纳米线上的Cu2O纳米颗粒存在纳米立方体和纳米八面体两种结构,其中八面体形貌所占比例约为80%。本论文利用紫外-可见吸收光谱检测Cu2O/CuO纳米杂化材料光催化降解甲基橙的活性,发现其光催化活性有了显著的提升,并利用密度泛函理论探究了Cu2O/CuO纳米杂化材料的光催化活性改善的机理。
[Abstract]:With the development of nanotechnology, nano-optoelectronic materials exhibit better physical and chemical properties than bulk materials. Therefore, the research and development of nano-optoelectronic materials has aroused wide interest. In recent years, it has been found that metal oxide nano-optoelectronic materials have great application prospects in environmental protection, nano-optoelectronic devices and solar cells due to their unique physical and chemical properties and simple preparation process. In this paper, the microstructure and photoelectric properties of metal oxide nanocrystalline semiconductors, such as cuprous oxide nanoparticles, organic dyes / titanium dioxide and copper oxide / cuprous oxide nanohybrid materials, were studied in detail, and the growth mechanism was explained. The microstructure of the material is correlated with the physical and chemical properties of the material. The main contents are as follows: (1) Cu2O nanocrystals with different morphologies were prepared by adjusting the current density and reaction time of electrochemical deposition at different temperatures and keeping the total electric quantity unchanged. The effects of different experimental conditions on the morphology, size and composition of the deposited products were investigated by means of scanning electron microscope (SEM) and ultraviolet spectrophotometer. The growth mechanism of electrochemical deposition of Cu2O nanocrystals was further studied. (2) Cu2O nano-octahedron particles with regular morphology were prepared by electrodeless deposition. The microstructure of the products on different metal substrates was studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the growth mechanism model was proposed. In addition, the optical properties and photocatalytic activity of Cu2O nanooctahedron were investigated. (3) Organic dyes and TiO2 nano-particles hybrid organic / inorganic hybrid nanomaterials were prepared by self-assembly technique. The microstructure of TiO2 nanoparticles was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the organic molecules were preferentially adsorbed on the {101} surface of TiO2 nanoparticles and correlated with their optical properties. The preferential adsorption of organic dye molecules on the surface of TiO2 nanoparticles {101} was investigated by using density functional theory. (4) the previous studies on the microstructure of Cu2O/CuO nano-hybrid materials were carried out. The Cu2O nanoparticles grown on CuO nanowires have two kinds of structures: nano-cube and nano-octahedron, in which the octahedral morphology is about 80%. In this paper, the photocatalytic activity of Cu2O/CuO nano-hybrid materials for degradation of methyl orange was detected by UV-Vis absorption spectra, and it was found that the photocatalytic activity of Cu2O/CuO nano-hybrid materials was significantly improved. The mechanism of the improvement of photocatalytic activity of Cu2O/CuO nano-hybrid materials was investigated by density functional theory (DFT).
【学位授予单位】:青岛大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O643.36;TB383.1

【共引文献】

相关期刊论文 前10条

1 郝彦忠;孙宝;罗冲;范龙雪;裴娟;李英品;;ZnO纳米管有序阵列与Cu_2O纳米晶核壳结构的光电化学性能及全固态纳米结构太阳电池研究[J];高等学校化学学报;2014年01期

2 陈鹭义;梁业如;林志勇;康信仁;李争晖;符若文;吴丁财;;新型中空炭纳米球在水系中性电解液中的超电容特性[J];功能材料;2014年21期

3 金玉红;王莉;尚玉明;高剑;李建军;何向明;;尖晶石结构NiCo_2O_4材料在超级电容器中的应用进展[J];储能科学与技术;2015年01期

4 陈双莉;焦宝娟;;锂离子电池负极材料Fe_2O_3/石墨复合材料的水热合成和电化学性能研究[J];化工新型材料;2014年01期

5 雒琴;赵馨茹;刘桂霞;王进贤;董相廷;于文生;;锂离子电池锡基负极材料的研究进展[J];化学通报;2014年06期

6 姚霞银;孟焕平;刘兆平;许晓雄;;高产率/低成本制备一维纳米结构负极材料及其在锂离子电池中的应用[J];中国科学:化学;2014年07期

7 卢雪峰;李奇;冯锦先;方萍萍;卢锡洪;刘鹏;李高仁;童叶翔;;纳米材料在超级电容器领域的有效设计与可控合成[J];中国科学:化学;2014年08期

8 YANG AiLing;WANG YuJin;LI ShunPin;BAO XiChang;YANG RenQiang;;Stepwise synthesis of cuprous oxide nanoparticles with adjustable structures and growth model[J];Science China(Technological Sciences);2014年11期

9 Wei Du;Xiaoqian Xu;Di Zhang;Qingyi Lu;Feng Gao;;Green synthesis of MnO_x nanostructures and studies of their supercapacitor performance[J];Science China Chemistry;2015年04期

10 张晶晶;余爱水;;纳米结构过渡金属氧化物作为锂离子电池负极材料(英文)[J];Science Bulletin;2015年09期

相关博士学位论文 前10条

1 范国康;纳米金属氧化物的低温无模板合成及其基于QCM技术的气体敏感特性研究[D];浙江大学;2013年

2 朱建慧;镍基纳米材料/复合物的制备及其电化学性能的研究[D];华中师范大学;2014年

3 顾鑫;过渡金属氧化物纳米结构的构筑及其储锂性能研究[D];山东大学;2014年

4 孙立;纳米结构晶态碳基材料可控制备及电化学储能特性研究[D];黑龙江大学;2014年

5 李晓燕;硫化物纳米材料(ZnS,CdS,KCu_(7-x)S_4)的制备及其相关性质研究[D];重庆大学;2014年

6 高强;云母负载纳米氧化钛薄膜组成、微结构与性能的研究[D];华南理工大学;2014年

7 苏庆梅;锂离子电池负极材料电化学反应行为与脱/嵌锂机理的原位透射电镜研究[D];太原理工大学;2014年

8 游力军;基于酚醛和密胺树脂的新型核壳结构复合微球的制备与应用研究[D];复旦大学;2013年

9 戴玉明;氧化锰超电容电极材料的制备及其电化学性能[D];南京大学;2014年

10 马德龙;纳米材料设计、合成及其储能应用研究[D];吉林大学;2014年

相关硕士学位论文 前10条

1 于刘涛;多孔氧化物复合电极在超级电容器中的电化学研究[D];安徽师范大学;2013年

2 李高;二氧化锰及其复合纳米材料电极材料的制备与电化学性能[D];东华大学;2014年

3 杜禹璇;锰氧化物/碳纳米纤维复合材料的制备及其电化学特性[D];东华大学;2014年

4 王丽娜;不同形貌金属氧化物的水热合成及其电化学性能研究[D];西北大学;2014年

5 蒋扉然;三氧化钼及其与聚苯胺复合材料的制备、表征及电化学性能[D];东华大学;2014年

6 马雪婧;镍钴复合氧化物的制备及其电化学性能研究[D];兰州理工大学;2014年

7 邓芳泽;不同形貌NiCo_2O_4的可控合成及其超级电容器性能研究[D];广东工业大学;2014年

8 王超;低维金属氧化物材料的制备、微观结构及其物理化学性能研究[D];青岛大学;2014年

9 王玉燕;过渡金属氧化物复合多孔材料的原位合成及其锂离子电池性能研究[D];山东大学;2014年

10 倪叶猛;氮碳比可调的氮掺杂碳层包裹的氧化镍复合材料的制备及其在锂离子电池负极材料中的应用[D];南京师范大学;2014年



本文编号:2344620

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/cailiaohuaxuelunwen/2344620.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b8fee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com